
Yan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6993534/publications.pdf Version: 2024-02-01

YAN YANC

#	Article	IF	CITATIONS
1	Effects of Bi 2 O 3 -Nb 2 O 5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics. Ceramics International, 2018, 44, 10545-10550.	4.8	61
2	Crystal structure and enhanced microwave dielectric properties of Ta ⁵⁺ substituted Li ₃ Mg ₂ NbO ₆ ceramics. Journal of the American Ceramic Society, 2020, 103, 214-223.	3.8	58
3	Correlations between the structural characteristics and enhanced microwave dielectric properties of V–modified Li3Mg2NbO6 ceramics. Ceramics International, 2018, 44, 19295-19300.	4.8	39
4	Bi3+ doping-adjusted microstructure, magnetic, and dielectric properties of nickel zinc ferrite ceramics for high frequency LTCC antennas. Ceramics International, 2020, 46, 25697-25704.	4.8	39
5	Investigation of grain boundary diffusion and grain growth of lithium zinc ferrites with low activation energy. Journal of the American Ceramic Society, 2018, 101, 5037-5045.	3.8	34
6	Densification and magnetic properties of NiCuZn low-sintering temperature ferrites with Bi2O3-Nb2O5 composite additives. Journal of Alloys and Compounds, 2019, 776, 954-959.	5.5	30
7	Synthesis of V2O5-Doped and low-sintered NiCuZn ferrite with uniform grains and enhanced magnetic properties. Ceramics International, 2020, 46, 10652-10657.	4.8	29
8	Enhanced gyromagnetic properties of NiCuZn ferrite ceramics for LTCC applications by adjusting MnO2-Bi2O3 substitution. Ceramics International, 2018, 44, 19370-19376.	4.8	27
9	Low temperature sintering and microwave dielectric properties of novel temperature stable Li3Mg2NbO6-0.1TiO2 ceramics. Materials Letters, 2018, 217, 48-51.	2.6	26
10	Investigation and characterization on crystal structure and enhanced microwave dielectric properties of non-stoichiometric Li3+xMg2NbO6 ceramics. Ceramics International, 2018, 44, 20539-20544.	4.8	26
11	Microstructures and magnetic properties of low temparature sintering NiCuZn ferrite ceramics for microwave applications. Ceramics International, 2019, 45, 22163-22168.	4.8	26
12	Ultralow loss and temperature stability of Li3Mg2NbO6-xLiF ceramics with low sintering temperature. Journal of Alloys and Compounds, 2019, 782, 370-374.	5.5	20
13	Equivalent permeability and permittivity of Sm substituted Mg–Cd ferrites for high-frequency applications. Journal of Alloys and Compounds, 2020, 819, 153059.	5.5	18
14	Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. Journal of Alloys and Compounds, 2019, 778, 8-14.	5.5	17
15	Microwave dielectric properties of low-temperature-fired MgNb ₂ O ₆ ceramics for LTCC applications. RSC Advances, 2020, 10, 29835-29842.	3.6	17
16	Low-temperature preparation of Al2O3-ZrO2 nanoceramics via pressureless sintering assisted by amorphous powders. Journal of Alloys and Compounds, 2019, 783, 806-812.	5.5	16
17	Microstructure and corrosion behavior of as-extruded Mg-6.5Li-xY-yZn alloys. Journal of Alloys and Compounds, 2020, 823, 153839.	5.5	15
18	Double peaks of the permeability spectra of obliquely sputtered CoFeB amorphous films. Materials Research Bulletin, 2019, 110, 107-111.	5.2	14

Yan Yang

#	Article	IF	CITATIONS
19	Nb5+ ion substitution assisted the magnetic and gyromagnetic properties of NiCuZn ferrite for high frequency LTCC devices. Ceramics International, 2022, 48, 12490-12496.	4.8	13
20	Effects of Li2O–B2O3–SiO2–CaO–Al2O3 glass addition on the sintering behavior and microwave dielectric properties of Li3Mg2NbO6 ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	11
21	Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites. Ceramics International, 2019, 45, 1946-1949.	4.8	11
22	Enhancement of structural and microwave properties of Zn2+ ion-substituted Li2MgSiO4 ceramics for LTCC applications. Ceramics International, 2021, 47, 15039-15043.	4.8	11
23	Effects of Bi2O3–MnO2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 12325-12332.	2.2	10
24	Bi2O3-doping controlled magnetic and dielectric properties of low-temperature co-fired NiCuZn ferrite for high-frequency applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 15437-15443.	2.2	9
25	Enhanced grain-boundary diffusion on power loss of low-temperature-fired NiCuZn ferrites for high-frequency power supplies. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	8
26	Nano-TiO2 substituted LiZnBi ferrite ceramics with low sintering temperature and enhanced magnetic properties for LTCC applications. Journal of Alloys and Compounds, 2019, 775, 1244-1250.	5.5	7
27	Enhanced microstructure and dielectric properties of low-temperature sintered MgO-xwt%LiF ceramics for high-frequency applications. Ceramics International, 2022, 48, 2704-2709.	4.8	6
28	Enhanced gyromagnetic properties of Cu-substituted LiZnTi ferrites for LTCC applications. Ceramics International, 2022, 48, 20090-20095.	4.8	6
29	Crystal structure and enhanced microwave dielectric properties of non-stoichiometric Li3Mg2+xNbO6 ceramics. Materials Letters, 2019, 235, 84-87.	2.6	4
30	Grain growth and tunable ferromagnetic resonance linewidth of low-temperature sintering NiCuZn gyromagnetic ferrites. Journal of Materials Science: Materials in Electronics, 2020, 31, 2845-2853.	2.2	4
31	Microwave dielectric properties and sintering behaviors of Zn1.8SiO3.8 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 517-523.	2.2	4
32	Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi ₂ O ₃ –CuO additives. Chinese Physics B, 2022, 31, 047502.	1.4	3
33	Influence of CuO additive on phase formation, microstructure and microwave dielectric properties of Cu-doped CuxZn1.8-xSiO3.8 ceramics. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1