
Volodymyr Kotsyubynsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide. Emergent Materials, 2022, 5, 89-103.	5.7	14
2	Correlation between structural properties and electrical conductivity of porous carbon derived from hemp bast fiber. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 873-882.	2.1	7
3	Eco-friendly synthesis of cobalt-zinc ferrites using quince extract for adsorption and catalytic applications: An approach towards environmental remediation. Chemosphere, 2022, 294, 133565.	8.2	22
4	Surfactant-assisted hydrothermal synthesis of NiFe2O4/reduced graphene oxide composites. Materials Today: Proceedings, 2022, 62, 5705-5711.	1.8	4
5	Removal of Congo Red dye, polar and non-polar compounds from aqueous solution using magnesium aluminate nanoparticles. Materials Today: Proceedings, 2021, 35, 518-522.	1.8	9
6	Self-combustion synthesized NiFe2O4/reduced graphene oxide composite nanomaterials: Effect of chelating agent type on the crystal structure and magnetic properties. Materials Today: Proceedings, 2021, 35, 542-547.	1.8	1
7	Multilayered MoS2/C nanospheres as high performance additives to lubricating oils. Materials Today: Proceedings, 2021, 35, 538-541.	1.8	6
8	Structural, morphological and electrical properties of graphene oxides obtained by Hummers, Tour and modified methods: a comparative study. Physics and Chemistry of Solid State, 2021, 22, 31-38.	0.8	14
9	Cobalt-iron spinel/reduced graphene oxide composite material for supercapacitor applications. Molecular Crystals and Liquid Crystals, 2021, 717, 60-71.	0.9	1
10	Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. Journal of Molecular Liquids, 2021, 328, 115375.	4.9	72
11	Palladium nanoparticles embedded in microporous carbon as electrocatalysts for water splitting in alkaline media. International Journal of Hydrogen Energy, 2021, 46, 21462-21474.	7.1	17
12	Electrochemical and electrical properties of nickel molybdate / carbon material composites. Physics and Chemistry of Solid State, 2021, 22, 481-486.	0.8	2
13	Synthesis and characterization of graphene oxide flakes for transparent thin films. Physics and Chemistry of Solid State, 2021, 22, 595-601.	0.8	3
14	Effect of the carbonization temperature of plant biomass on the structure, surface condition and electrical conductive properties of carbon nanoporous material. Journal of Physical Studies, 2021, 25, .	0.5	2
15	SAXS and Raman Study of the Structural Evolution in Hemp Bast Fiber Derived Porous Carbon. , 2021, , .		2
16	Zn-doped CoFe2O4Nanoparticles Synthesized Using Ginkgo Biloba Extract: Cation Distribution, Mossbauer Studies and Application for Water Treatment. Physics and Chemistry of Solid State, 2021, 22, 792-803.	0.8	2
17	Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core. Journal of Molecular Liquids, 2020, 297, 111757.	4.9	55
18	Low-temperature sorption of hydrogen by porous carbon material containing palladium nanoclusters. Low Temperature Physics, 2020, 46, 1030-1038.	0.6	1

#	Article	IF	CITATIONS
19	Thermally induced phase transformations of Al ₉₃ Fe ₄ Nb ₃ and A _{I90} Fe ₇ Nb ₃ quenched alloys. Materials Research Express, 2020, 7, 036505.	1.6	1
20	Methods of obtaining nickel molybdates and composites of molybdate/carbon material for electrodes of hybrid supercapacitors (Review). Physics and Chemistry of Solid State, 2020, 21, 650-659.	0.8	4
21	Atomic Structure and Morphology of Fumed Silica. Physics and Chemistry of Solid State, 2020, 21, 325-331.	0.8	4
22	Ultrafine beta-FeOOH and Fe3O4 obtained by precipitation method: comparative study of electrical and electrical electrochemical properties. Physics and Chemistry of Solid State, 2020, 21, 680-688.	0.8	1
23	Structural and electrophysical properties of thermally expanded graphite prepared by chemical methods: comparative analysis. Physics and Chemistry of Solid State, 2020, 21, 591-597.	0.8	2
24	Accumulation of Charge Mechanisms in Electrochemical Systems Based on Carbon and Nickel Tungstate. Surface Engineering and Applied Electrochemistry, 2020, 56, 697-703.	0.8	4
25	Reduced Graphene Oxide Obtained by Hummers and Marcano-Tour Methods: Comparison of Electrical Properties. Journal of Nanoscience and Nanotechnology, 2019, 19, 7320-7329.	0.9	12
26	β-Ni(OH)2/ reduced graphene oxide composite as electrode for supercapacitors. Materials Today: Proceedings, 2019, 6, 106-115.	1.8	18
27	Pure ultrafine magnetite from carbon steel wastes. Materials Today: Proceedings, 2019, 6, 270-278.	1.8	7
28	Effect of synthesis conditions on the morphological and electrochemical properties of nitrogen-doped porous carbon materials. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 669-676.	2.1	10
29	Effect of Orthophosphoric Acid on Morphology of Nanoporous Carbon Materials. Journal of Nano- and Electronic Physics, 2019, 11, 03036-1-03036-6.	0.5	7
30	Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH) ₂ and its composites with carbon. Materials Science-Poland, 2019, 37, 547-553.	1.0	3
31	Optical and electrical properties of β-Ni (OH) ₂ /reduced graphene oxide nanocomposite. Molecular Crystals and Liquid Crystals, 2018, 672, 168-177.	0.9	2
32	Green synthesis of cobalt ferrite nanoparticles using <i>Cydonia oblonga</i> extract: structural and mössbauer studies. Molecular Crystals and Liquid Crystals, 2018, 672, 54-66.	0.9	38
33	Structural and electrical properties of nickel-iron spinel/reduced graphene oxide nanocomposites. Molecular Crystals and Liquid Crystals, 2018, 673, 137-148.	0.9	7
34	The Effect of Sulphate Anions on the Ultrafine Titania Nucleation. Nanoscale Research Letters, 2017, 12, 369.	5.7	9
35	Rod-Like Rutile Nanoparticles: Synthesis, Structure and Morphology. Journal of Nano Research, 2017, 50, 32-40.	0.8	3
36	The effect of pH on the nucleation of titania by hydrolysis of TiCl ₄ . Materialwissenschaft Und Werkstofftechnik, 2016, 47, 288-294.	0.9	11

#	Article	IF	CITATIONS
37	The Importance of Surfactant and Its Type on MoS ₂ Nanoparticles Formation. Journal of Nanoscience and Nanotechnology, 2016, 16, 7792-7796.	0.9	6
38	Formation of Structure and Properties of Composite Coatings TiB\$_{2}\$—TiC—Steel Obtained by Overlapping of Electric-Arc Surfacing and Self-Propagating High-Temperature Synthesis. Metallofizika I Noveishie Tekhnologii, 2016, 38, 1265-1278.	0.5	9
39	Synthesis and doubleâ€hierarchical structure of MoS ₂ /C nanospheres. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2309-2314.	1.8	9
40	Synthesis and Mossbauer studies of mesoporous Î ³ -Fe2O3. Materials Science-Poland, 2014, 32, 481-486.	1.0	13
41	Synthesis, Characterization and Electrochemical Properties of Mesoporous Maghemite γ-Fe ₂ 0 ₃ . Solid State Phenomena, 0, 230, 120-126.	0.3	7
42	Effect of Synthesis Conditions on Pseudocapacitance Properties of Nitrogen-Doped Porous Carbon Materials. Journal of Nano Research, 0, 59, 112-125.	0.8	7
43	Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites. Applied Nanoscience (Switzerland), 0, , 1.	3.1	2
44	The effect of the carbon material content on the electrophysical and optical properties of NiMoO ₄ /C composites. Molecular Crystals and Liquid Crystals, 0, , 1-9.	0.9	0