Rosario Francesco Donato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6992952/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sciences, 2021, 272, 119251.	2.0	32
2	Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19—The Role of RAGE-RAS Crosstalk. Biomolecules, 2021, 11, 876.	1.8	25
3	S100 proteins in obesity: liaisons dangereuses. Cellular and Molecular Life Sciences, 2020, 77, 129-147.	2.4	31
4	Welcome to the New Open Access NeuroSci. NeuroSci, 2020, 1, 15-16.	0.4	0
5	Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 929-946.	2.9	60
6	Reductive stress in striated muscle cells. Cellular and Molecular Life Sciences, 2020, 77, 3547-3565.	2.4	31
7	Parenchymal and nonâ€parenchymal immune cells in the brain: A critical role in regulating CNS functions. International Journal of Developmental Neuroscience, 2019, 77, 26-38.	0.7	14
8	Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 721-733.	1.9	1,050
9	Cellular and molecular mechanisms of sarcopenia: the S100B perspective. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1255-1268.	2.9	64
10	Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. Nanomaterials, 2018, 8, 867.	1.9	18
11	RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1213-1234.	2.9	75
12	Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Human Molecular Genetics, 2018, 27, 3734-3746.	1.4	26
13	Microglia and Aging: The Role of the TREM2–DAP12 and CX3CL1-CX3CR1 Axes. International Journal of Molecular Sciences, 2018, 19, 318.	1.8	154
14	S100A6 protein: functional roles. Cellular and Molecular Life Sciences, 2017, 74, 2749-2760.	2.4	104
15	Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Scientific Reports, 2017, 7, 12537.	1.6	37
16	Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death and Differentiation, 2017, 24, 2077-2088.	5.0	38
17	Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth <i>in vivo</i> in embryonal rhabdomyosarcoma cells. Carcinogenesis, 2015, 36, 1071-1083.	1.3	77
18	Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis, 2014, 35, 2382-2392.	1.3	19

#	Article	IF	CITATIONS
19	RAGE signaling deficiency in rhabdomyosarcoma cells causes upregulation of PAX7 and uncontrolled proliferation. Journal of Cell Science, 2014, 127, 1699-1711.	1.2	17
20	HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications, 2013, 4, 2388.	5.8	69
21	Causes of elevated serum levels of S100B protein in athletes. European Journal of Applied Physiology, 2013, 113, 819-820.	1.2	8
22	RAGE in tissue homeostasis, repair and regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 101-109.	1.9	187
23	Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1338-1350.	2.5	39
24	HMGB1/RAGE regulates muscle satellite cell homeostasis via p38 MAPK/myogenin-dependent repression of Pax7 transcription. Journal of Cell Science, 2012, 125, 1440-54.	1.2	74
25	S100B Engages RAGE or bFGF/FGFR1 in Myoblasts Depending on Its Own Concentration and Myoblast Density. Implications for Muscle Regeneration. PLoS ONE, 2012, 7, e28700.	1.1	45
26	S100 Calcium Binding Proteins and Ion Channels. Frontiers in Pharmacology, 2012, 3, 67.	1.6	64
27	The Danger Signal S100B Integrates Pathogen– and Danger–Sensing Pathways to Restrain Inflammation. PLoS Pathogens, 2011, 7, e1001315.	2.1	85
28	S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1092-1104.	1.9	25
29	Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. Age, 2011, 33, 523-541.	3.0	51
30	S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. Journal of Cell Science, 2011, 124, 2389-2400.	1.2	52
31	S100B Protein Stimulates Microglia Migration via RAGE-dependent Up-regulation of Chemokine Expression and Release. Journal of Biological Chemistry, 2011, 286, 7214-7226.	1.6	195
32	Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	1.1	47
33	S100B protein in myoblasts modulates myogenic differentiation via NFâ€₽Bâ€dependent inhibition of MyoD expression. Journal of Cellular Physiology, 2010, 223, 270-282.	2.0	52
34	The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one. Italian Journal of Anatomy and Embryology, 2010, 115, 147-51.	0.1	17
35	S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase. Journal of Biological Chemistry, 2009, 284, 8797-8811.	1.6	135
36	S100B's double life: Intracellular regulator and extracellular signal. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1008-1022.	1.9	595

#	Article	IF	CITATIONS
37	RAGE Expression in Rhabdomyosarcoma Cells Results in Myogenic Differentiation and Reduced Proliferation, Migration, Invasiveness, and Tumor Growth. American Journal of Pathology, 2007, 171, 947-961.	1.9	56
38	S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK. Journal of Cellular Physiology, 2006, 207, 461-470.	2.0	36
39	The Amphoterin (HMGB1)/Receptor for Advanced Glycation End Products (RAGE) Pair Modulates Myoblast Proliferation, Apoptosis, Adhesiveness, Migration, and Invasiveness. Journal of Biological Chemistry, 2006, 281, 8242-8253.	1.6	105
40	S100B Increases Proliferation in PC12 Neuronal Cells and Reduces Their Responsiveness to Nerve Growth Factor via Akt Activation. Journal of Biological Chemistry, 2005, 280, 4402-4414.	1.6	72
41	Amphoterin Stimulates Myogenesis and Counteracts the Antimyogenic Factors Basic Fibroblast Growth Factor and S100B via RAGE Binding. Molecular and Cellular Biology, 2004, 24, 4880-4894.	1.1	115
42	S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. Journal of Cellular Physiology, 2004, 199, 274-283.	2.0	63
43	S100B Inhibits Myogenic Differentiation and Myotube Formation in a RAGE-Independent Manner. Molecular and Cellular Biology, 2003, 23, 4870-4881.	1.1	75
44	S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. International Journal of Biochemistry and Cell Biology, 2001, 33, 637-668.	1.2	1,401
45	Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. Journal of Biological Chemistry, 2000, 275, 40096-40105.	1.6	516
46	Effects of calciumâ€binding proteins (Sâ€100a o , Sâ€100a, Sâ€100b) on desmin assembly in vitro. FASEB Journa 1996, 10, 317-324.	^{l,} 0.2	46
47	Identity Between Cytoplasmic and Membrane-Bound S-100 Proteins Purified from Bovine and Rat Brain. Journal of Neurochemistry, 1986, 46, 1333-1337.	2.1	30
48	Effects of Sâ€100 Proteins on Assembly of Brain Microtubule Proteins: Correlation Between Kinetic and Ultrastructural Data. Journal of Neurochemistry, 1986, 47, 350-354.	2.1	10
49	Binding of Chlorpromazine to S-100 Protein. Journal of Neurochemistry, 1984, 42, 1468-1471.	2.1	15
50	S-100 Protein Decreases the Fluidity of the Lipid Bilayer of Purified Synaptic Plasma Membranes. Protides of the Biological Fluids; Proceedings of the Colloquium, 1984, 31, 413-416.	0.1	0
51	Effect of S-100 protein on assembly of brain microtubule proteins in vitro. FEBS Letters, 1983, 162, 310-313.	1.3	60