Vivian Hook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Molecular Psychiatry, 2022, 27, 1217-1225.	4.1	30
2	Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry, 2022, 65, 2956-2970.	2.9	46
3	Distinct Dibasic Cleavage Specificities of Neuropeptide-Producing Cathepsin L and Cathepsin V Cysteine Proteases Compared to PC1/3 and PC2 Serine Proteases. ACS Chemical Neuroscience, 2022, 13, 245-256.	1.7	5
4	Molecular Features of CA-074 pH-Dependent Inhibition of Cathepsin B. Biochemistry, 2022, 61, 228-238.	1.2	12
5	Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacological Reviews, 2022, 74, 600-629.	7.1	29
6	Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer's Disease Brain. ACS Chemical Neuroscience, 2022, 13, 1992-2005.	1.7	13
7	A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. ACS Chemical Biology, 2021, 16, 642-650.	1.6	74
8	Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS Omega, 2021, 6, 13033-13056.	1.6	7
9	Differential Neuropeptidomes of Dense Core Secretory Vesicles (DCSV) Produced at Intravesicular and Extracellular pH Conditions by Proteolytic Processing. ACS Chemical Neuroscience, 2021, 12, 2385-2398.	1.7	16
10	Synapsin-caveolin-1 gene therapy preserves neuronal and synaptic morphology and prevents neurodegeneration in a mouse model of AD. Molecular Therapy - Methods and Clinical Development, 2021, 21, 434-450.	1.8	13
11	Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chemical Biology, 2021, 16, 1628-1643.	1.6	27
12	Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Frontiers in Neuroscience, 2021, 15, 702788.	1.4	33
13	High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma. Molecules, 2020, 25, 4071.	1.7	10
14	Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. Journal of Neurotrauma, 2020, 37, 1574-1586.	1.7	19
15	Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. Journal of Neurochemistry, 2020, 155, 300-312.	2.1	19
16	Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140428.	1.1	91
17	Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses. Molecular and Cellular Proteomics, 2020, 19, 1017-1034.	2.5	34
18	Multiple clinical features of Huntington's disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. Journal of Neurology, 2019, 266, 551-564.	1.8	38

#	Article	IF	CITATIONS
19	The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i> . ACS Infectious Diseases, 2019, 5, 1802-1812.	1.8	25
20	Design of Gallinamide A Analogs as Potent Inhibitors of the Cysteine Proteases Human Cathepsin L and <i>Trypanosoma cruzi</i> Cruzain. Journal of Medicinal Chemistry, 2019, 62, 9026-9044.	2.9	43
21	Metabolomics Analyses of 14 Classical Neurotransmitters by GC-TOF with LC-MS Illustrates Secretion of 9 Cell–Cell Signaling Molecules from Sympathoadrenal Chromaffin Cells in the Presence of Lithium. ACS Chemical Neuroscience, 2019, 10, 1369-1379.	1.7	13
22	Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 807-816.	1.2	29
23	Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles. Journal of the American Society for Mass Spectrometry, 2018, 29, 935-947.	1.2	10
24	Lysosomal Cathepsin Protease Gene Expression Profiles in the Human Brain During Normal Development. Journal of Molecular Neuroscience, 2018, 65, 420-431.	1.1	16
25	Human brain gene expression profiles of the cathepsin V and cathepsin L cysteine proteases, with the PC1/3 and PC2 serine proteases, involved in neuropeptide production. Heliyon, 2018, 4, e00673.	1.4	9
26	Mass Spectrometry-Based Visualization of Molecules Associated with Human Habitats. Analytical Chemistry, 2016, 88, 10775-10784.	3.2	44
27	The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annual Review of Pharmacology and Toxicology, 2016, 56, 511-533.	4.2	45
28	Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Frontiers in Neurology, 2015, 6, 178.	1.1	76
29	Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems. Journal of the American Society for Mass Spectrometry, 2015, 26, 1970-1980.	1.2	23
30	Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Molecular and Cellular Neurosciences, 2015, 68, 177-185.	1.0	20
31	Human iPSC Neurons Display Activity-Dependent Neurotransmitter Secretion: Aberrant Catecholamine Levels in Schizophrenia Neurons. Stem Cell Reports, 2014, 3, 531-538.	2.3	97
32	The Marine Cyanobacterial Metabolite Gallinamide A Is a Potent and Selective Inhibitor of Human Cathepsin L. Journal of Natural Products, 2014, 77, 92-99.	1.5	57
33	The Cysteine Protease Cathepsin B Is a Key Drug Target and Cysteine Protease Inhibitors Are Potential Therapeutics for Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 515-529.	1.7	56
34	Genetic variants affecting alternative splicing of human cholesteryl ester transfer protein. Biochemical and Biophysical Research Communications, 2014, 443, 1270-1274.	1.0	10
35	Brain Pyroglutamate Amyloid-β is Produced by Cathepsin B and is Reduced by the Cysteine Protease Inhibitor E64d, Representing a Potential Alzheimer's Disease Therapeutic. Journal of Alzheimer's Disease, 2014, 41, 129-149.	1.2	73
36	Pyroglutamate-Amyloid-β and Glutaminyl Cyclase Are Colocalized with Amyloid-β in Secretory Vesicles and Undergo Activity-Dependent, Regulated Secretion. Neurodegenerative Diseases, 2014, 14, 85-97.	0.8	9

#	Article	IF	CITATIONS
37	O1-10-05: CATHEPSIN B KNOCKOUT REDUCES PGLU-ABETA AND ABETA, AND IMPROVES MEMORY DEFICITS, IN THE APPLON MOUSE MODEL OF AD. , 2014, 10, P150-P150.		0
38	Spinal astrocytes produce and secrete dynorphin neuropeptides. Neuropeptides, 2013, 47, 109-115.	0.9	26
39	Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides, 2013, 46, 126-135.	1.2	26
40	Deletion of the Cathepsin B Gene Improves Memory Deficits in a Transgenic Alzheimer's Disease Mouse Model Expressing AβPP Containing the Wild-Type β-Secretase Site Sequence. Journal of Alzheimer's Disease, 2012, 29, 827-840.	1.2	66
41	Cathepsin H functions as an aminopeptidase in secretory vesicles for production of enkephalin and galanin peptide neurotransmitters. Journal of Neurochemistry, 2012, 122, 512-522.	2.1	24
42	Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 89-104.	1.1	67
43	The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases. PLoS ONE, 2012, 7, e41134.	1.1	11
44	The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid Hâ€D exchange mass spectrometry. Protein Science, 2012, 21, 178-187.	3.1	10
45	Human Cathepsin V Protease Participates in Production of Enkephalin and NPY Neuropeptide Neurotransmitters. Journal of Biological Chemistry, 2012, 287, 15232-15241.	1.6	27
46	Deletion of the Cathepsin B gene improves memory deficits in a Alzheimer's disease mouse model expressing APP containing the wildâ€ŧype βâ€secretase site sequence. FASEB Journal, 2012, 26, 956.9.	0.2	0
47	The Cysteine Protease Inhibitor, E64d, Reduces Brain Amyloid-β and Improves Memory Deficits in Alzheimer's Disease Animal Models by Inhibiting Cathepsin B, but not BACE1, β-Secretase Activity. Journal of Alzheimer's Disease, 2011, 26, 387-408.	1.2	92
48	Mutation in the substrate-binding site of aminopeptidase B confers new enzymatic properties. Biochimie, 2011, 93, 730-741.	1.3	10
49	NeuroPedia: neuropeptide database and spectral library. Bioinformatics, 2011, 27, 2772-2773.	1.8	63
50	The Novel Role of Cathepsin L for Neuropeptide Production Illustrated by Research Strategies in Chemical Biology with Protease Gene Knockout and Expression. Methods in Molecular Biology, 2011, 768, 107-125.	0.4	9
51	Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication. AAPS Journal, 2010, 12, 635-645.	2.2	23
52	Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides, 2010, 44, 457-466.	0.9	46
53	Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce β-amyloid related to Alzheimer's disease. Biological Chemistry, 2010, 391, 861-72.	1.2	42
54	Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cellâ [^] Cell Communication. Journal of Proteome Research, 2010, 9, 5002-5024.	1.8	48

#	Article	IF	CITATIONS
55	Mass Spectrometry-Based Neuropeptidomics of Secretory Vesicles from Human Adrenal Medullary Pheochromocytoma Reveals Novel Peptide Products of Prohormone Processing. Journal of Proteome Research, 2010, 9, 5065-5075.	1.8	29
56	Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Molecular and Cellular Neurosciences, 2010, 43, 98-107.	1.0	33
57	Endopin Serpin Protease Inhibitors Localize with Neuropeptides in Secretory Vesicles and Neuroendocrine Tissues. Neuroendocrinology, 2009, 89, 210-216.	1.2	7
58	Human pituitary contains dual cathepsin L and prohormone convertase processing pathway components involved in converting POMC into the peptide hormones ACTH, α-MSH, and β-endorphin. Endocrine, 2009, 35, 429-437.	1.1	33
59	Linear and accurate quantitation of proenkephalin-derived peptides by isotopic labeling with internal standards and mass spectrometry. Analytical Biochemistry, 2009, 389, 18-26.	1.1	12
60	Detecting low-abundance vasoactive peptides in plasma: Progress toward absolute quantitation using nano liquid chromatography–mass spectrometry. Analytical Biochemistry, 2009, 394, 164-170.	1.1	27
61	Differential Accessibilities of Dibasic Prohormone Processing Sites of Proenkephalin to the Aqueous Environment Revealed by Hâ^'D Exchange Mass Spectrometry. Biochemistry, 2009, 48, 1604-1612.	1.2	4
62	Proteolytic Fragments of Chromogranins A and B Represent Major Soluble Components of Chromaffin Granules, Illustrated by Two-Dimensional Proteomics with NH ₂ -Terminal Edman Peptide Sequencing and MALDI-TOF MS. Biochemistry, 2009, 48, 5254-5262.	1.2	21
63	Cathepsin L plays a major role in cholecystokinin production in mouse brain cortex and in pituitary AtT-20 cells: Protease gene knockout and inhibitor studies. Peptides, 2009, 30, 1882-1891.	1.2	35
64	Cathepsin L Participates in the Production of the Dynorphin Opioid Peptide Neurotransmitter. FASEB Journal, 2009, 23, 671.3.	0.2	0
65	Cathepsin L participates in the production of neuropeptide Y in secretory vesicles, demonstrated by protease gene knockout and expression. Journal of Neurochemistry, 2008, 106, 384-391.	2.1	50
66	Zinc regulation of aminopeptidase B involved in neuropeptide production. FEBS Letters, 2008, 582, 2527-2531.	1.3	10
67	Differential activation of enkephalin, galanin, somatostatin, NPY, and VIP neuropeptide production by stimulators of protein kinases A and C in neuroendocrine chromaffin cells. Neuropeptides, 2008, 42, 503-511.	0.9	16
68	Proteases for Processing Proneuropeptides into Peptide Neurotransmitters and Hormones. Annual Review of Pharmacology and Toxicology, 2008, 48, 393-423.	4.2	215
69	Alternative pathways for production of β-amyloid peptides of Alzheimer's disease. Biological Chemistry, 2008, 389, 993-1006.	1.2	68
70	Major Role of Cathepsin L for Producing the Peptide Hormones ACTH, β-Endorphin, and α-MSH, Illustrated by Protease Gene Knockout and Expression. Journal of Biological Chemistry, 2008, 283, 35652-35659.	1.6	69
71	Alternative pathways for production of β-amyloid peptides of Alzheimer's disease. Biological Chemistry, 2008, .	1.2	1
72	Cathepsin L Expression Is Directed to Secretory Vesicles for Enkephalin Neuropeptide Biosynthesis and Secretion. Journal of Biological Chemistry, 2007, 282, 9556-9563.	1.6	43

#	Article	IF	CITATIONS
73	The future of proteomic analysis in biological systems and molecular medicine. Molecular BioSystems, 2007, 3, 14-17.	2.9	3
74	Cysteine protease inhibitors effectively reduce in vivo levels of brain β-amyloid related to Alzheimer's disease. Biological Chemistry, 2007, 388, 247-52.	1.2	43
75	Proteomics of Neuroendocrine Secretory Vesicles Reveal Distinct Functional Systems for Biosynthesis and Exocytosis of Peptide Hormones and Neurotransmitters. Journal of Proteome Research, 2007, 6, 1652-1665.	1.8	44
76	Secretory vesicle aminopeptidase B related to neuropeptide processing: molecular identification and subcellular localization to enkephalin- and NPY-containing chromaffin granules. Journal of Neurochemistry, 2007, 100, 1340-1350.	2.1	51
77	Resistance of cathepsin L compared to elastase to proteolysis when complexed with the serpin endopin 2C, and recovery of cathepsin L activity. Biochemical and Biophysical Research Communications, 2006, 340, 1238-1243.	1.0	5
78	CATHEPSIN L PARTICIPATES IN THE PRODUCTION OF PEPTIDE NEUROTRANSMITTERS AND HORMONES IN THE REGULATED SECRETORY PATHWAY: STUDIES IN CATHEPSIN L KNOCKOUT MICE AND NEUROENDOCRINE CELLS FASEB Journal, 2006, 20, A243.	0.2	0
79	INHIBITORS OF CATHEPSIN B REDUCE PRODUCTION OF BETAâ€AMYLOID IN REGULATED SECRETORY VESICLES: NOVEL CYSTEINE PROTEASE PATHWAY AS BETAâ€SECRETASE FOR GENERATING BETAâ€AMYLOID OF ALZHEIME DISEASE. FASEB Journal, 2006, 20, A1135.	A R'6.2	2
80	Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease. Biological Chemistry, 2005, 386, 1325-1325.	1.2	38
81	Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease. Biological Chemistry, 2005, 386, 931-40.	1.2	138
82	Cysteine Proteases as beta-Secretases for Abeta Production in the Major Regulated Secretory Pathway of Neurons. Oxidative Stress and Disease, 2005, , 327-342.	0.3	0
83	Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biological Chemistry, 2004, 385, 473-80.	1.2	64
84	Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9590-9595.	3.3	199
85	Discovery of pH-Selective Marine and Plant Natural Product Inhibitors of Cathepsin B Revealed by Screening at Acidic and Neutral pH Conditions. ACS Omega, 0, , .	1.6	2