Jeremy J Baumberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6992233/publications.pdf Version: 2024-02-01

IEDEMY L RALIMBERC

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535, 127-130.	13.7	1,391
3	Revealing the quantum regime in tunnelling plasmonics. Nature, 2012, 491, 574-577.	13.7	939
4	Room-Temperature Polariton Lasing in Semiconductor Microcavities. Physical Review Letters, 2007, 98, 126405.	2.9	833
5	Angle-Resonant Stimulated Polariton Amplifier. Physical Review Letters, 2000, 84, 1547-1550.	2.9	753
6	Single-molecule optomechanics in "picocavities― Science, 2016, 354, 726-729.	6.0	607
7	Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 2016, 7, 11495.	5.8	605
8	Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook. Advanced Materials, 2013, 25, 2517-2534.	11.1	591
9	Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404, 740-743.	13.7	553
10	Extreme nanophotonics from ultrathin metallic gaps. Nature Materials, 2019, 18, 668-678.	13.3	488
11	Pointillist structural color in <i>Pollia</i> fruit. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15712-15715.	3.3	475
12	Omnidirectional absorption in nanostructured metal surfaces. Nature Photonics, 2008, 2, 299-301.	15.6	430
13	Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities. Physical Review Letters, 2000, 85, 3680-3683.	2.9	401
14	Ultrafast Coherent Control and Destruction of Excitons in Quantum Wells. Physical Review Letters, 1995, 75, 2598-2601.	2.9	395
15	DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Communications, 2014, 5, 3448.	5.8	377
16	Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010, 5, 511-515.	15.6	353
17	Highly Ordered Macroporous Gold and Platinum Films Formed by Electrochemical Deposition through Templates Assembled from Submicron Diameter Monodisperse Polystyrene Spheres. Chemistry of Materials, 2002, 14, 2199-2208.	3.2	328
18	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[<i>n</i>]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	7.3	322

#	Article	IF	CITATIONS
19	Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Physical Review B, 1997, 56, 7574-7588.	1.1	307
20	Current status of AlInN layers lattice-matched to GaN for photonics and electronics. Journal Physics D: Applied Physics, 2007, 40, 6328-6344.	1.3	304
21	Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nature Communications, 2017, 8, 1296.	5.8	290
22	A 3D Optical Metamaterial Made by Selfâ€Assembly. Advanced Materials, 2012, 24, OP23-7.	11.1	288
23	Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids. Physical Review Letters, 2006, 97, 266808.	2.9	269
24	Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals. Nano Letters, 2005, 5, 2262-2267.	4.5	250
25	Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Optics Express, 2006, 14, 847.	1.7	227
26	Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 2000, 62, R16247-R16250.	1.1	222
27	Digital Color in Cellulose Nanocrystal Films. ACS Applied Materials & Interfaces, 2014, 6, 12302-12306.	4.0	222
28	Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO ₄ photoanodes for solar water oxidation. Energy and Environmental Science, 2014, 7, 1402-1408.	15.6	220
29	Wetting of Regularly Structured Gold Surfaces. Langmuir, 2005, 21, 1753-1757.	1.6	217
30	Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials. Advanced Optical Materials, 2015, 3, 12-32.	3.6	213
31	Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Letters, 2013, 13, 5033-5038.	4.5	210
32	Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser. Physical Review Letters, 2008, 101, 136409.	2.9	197
33	Sculpting oscillators with light within a nonlinear quantum fluid. Nature Physics, 2012, 8, 190-194.	6.5	191
34	Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells. Physical Review Letters, 1996, 77, 2814-2817.	2.9	188
35	Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers. Nano Letters, 2010, 10, 1787-1792.	4.5	188
36	Optical properties of nanostructured metal films. Faraday Discussions, 2004, 125, 117.	1.6	185

#	Article	IF	CITATIONS
37	SERS at Structured Palladium and Platinum Surfaces. Journal of the American Chemical Society, 2007, 129, 7399-7406.	6.6	185
38	Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds. Nano Letters, 2015, 15, 2600-2604.	4.5	183
39	Understanding Plasmons in Nanoscale Voids. Nano Letters, 2007, 7, 2094-2100.	4.5	182
40	Room-temperature polariton lasers based on GaN microcavities. Applied Physics Letters, 2002, 81, 412-414.	1.5	179
41	Controlled, Bioâ€inspired Selfâ€Assembly of Celluloseâ€Based Chiral Reflectors. Advanced Optical Materials, 2014, 2, 646-650.	3.6	179
42	Bioâ€Inspired Bandâ€Gap Tunable Elastic Optical Multilayer Fibers. Advanced Materials, 2013, 25, 2239-2245.	11.1	176
43	Electrochemical SERS at a structured gold surface. Electrochemistry Communications, 2005, 7, 740-744.	2.3	171
44	Confined Plasmons in Metallic Nanocavities. Physical Review Letters, 2001, 87, 176801.	2.9	170
45	Photo-Rechargeable Organo-Halide Perovskite Batteries. Nano Letters, 2018, 18, 1856-1862.	4.5	170
46	Nanoparticle-tuned structural color from polymer opals. Optics Express, 2007, 15, 9553.	1.7	168
47	SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape. Journal of Physical Chemistry Letters, 2016, 7, 2264-2269.	2.1	163
48	Nanooptics of Molecular-Shunted Plasmonic Nanojunctions. Nano Letters, 2015, 15, 669-674.	4.5	162
49	Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Optics Letters, 2002, 27, 2200.	1.7	157
50	Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces. Physical Review Letters, 2005, 95, 116802.	2.9	154
51	Plasmonic Enhancement in BiVO ₄ Photonic Crystals for Efficient Water Splitting. Small, 2014, 10, 3970-3978.	5.2	152
52	Relaxation bottleneck and its suppression in semiconductor microcavities. Physical Review B, 2000, 62, R2283-R2286.	1.1	147
53	Threading plasmonic nanoparticle strings with light. Nature Communications, 2014, 5, 4568.	5.8	144
54	Light-induced actuating nanotransducers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5503-5507.	3.3	143

#	Article	IF	CITATIONS
55	Quantitative SERS Using the Sequestration of Small Molecules Inside Precise Plasmonic Nanoconstructs. Nano Letters, 2012, 12, 5924-5928.	4.5	142
56	Sculpted substrates for SERS. Faraday Discussions, 2006, 132, 191-199.	1.6	141
57	Scalable electrochromic nanopixels using plasmonics. Science Advances, 2019, 5, eaaw2205.	4.7	139
58	Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities. ACS Photonics, 2018, 5, 186-191.	3.2	137
59	Optical Superfluid Phase Transitions and Trapping of Polariton Condensates. Physical Review Letters, 2013, 110, 186403.	2.9	135
60	Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nature Materials, 2022, 21, 352-358.	13.3	129
61	Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Applied Physics Letters, 2014, 104, .	1.5	126
62	Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters, 2018, 18, 405-411.	4.5	126
63	Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructured Gold Surfaces. Nano Letters, 2011, 11, 5339-5343.	4.5	125
64	How Light Is Emitted by Plasmonic Metals. Nano Letters, 2017, 17, 2568-2574.	4.5	125
65	Spin beats and dynamical magnetization in quantum structures. Physical Review Letters, 1994, 72, 717-720.	2.9	124
66	Large-scale ordering of nanoparticles using viscoelastic shear processing. Nature Communications, 2016, 7, 11661.	5.8	123
67	Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. Journal of Physical Chemistry C, 2010, 114, 12069-12077.	1.5	120
68	Nonlinear Superchiral Metaâ€6urfaces: Tuning Chirality and Disentangling Nonâ€Reciprocity at the Nanoscale. Advanced Materials, 2014, 26, 4074-4081.	11.1	120
69	Coupling Quantum Tunneling with Cavity Photons. Science, 2012, 336, 704-707.	6.0	119
70	Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as <i>in Situ</i> Size-Selective Raman Probes. Journal of the American Chemical Society, 2019, 141, 3893-3900.	6.6	119
71	Understanding the Surface-Enhanced Raman Spectroscopy "Background― Journal of Physical Chemistry C, 2010, 114, 7242-7250	1.5	118
72	Plasmonic tunnel junctions for single-molecule redox chemistry. Nature Communications, 2017, 8, 994.	5.8	116

#	Article	IF	CITATIONS
73	How Ultranarrow Cap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. ACS Photonics, 2017, 4, 469-475.	3.2	115
74	Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nature Communications, 2019, 10, 1049.	5.8	114
75	Lightâ€Directed Writing of Chemically Tunable Narrowâ€Band Holographic Sensors. Advanced Optical Materials, 2014, 2, 250-254.	3.6	110
76	A one-piece 3D printed flexure translation stage for open-source microscopy. Review of Scientific Instruments, 2016, 87, 025104.	0.6	108
77	Tuning plasmons on nano-structured substrates for NIR-SERS. Physical Chemistry Chemical Physics, 2007, 9, 104-109.	1.3	107
78	Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures. Physical Review B, 1994, 50, 7689-7700.	1.1	103
79	Metal Oxide Nanoparticle Mediated Enhanced Raman Scattering and Its Use in Direct Monitoring of Interfacial Chemical Reactions. Nano Letters, 2012, 12, 4242-4246.	4.5	103
80	Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226.	4.5	101
81	Reproducible Deep-UV SERRS on Aluminum Nanovoids. Journal of Physical Chemistry Letters, 2013, 4, 1449-1452.	2.1	101
82	Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano, 2015, 9, 825-830.	7.3	101
83	Canonical Quantization of Light in a Linear Dielectric. Europhysics Letters, 1991, 16, 177-182.	0.7	100
84	In Situ Intercalation Dynamics in Inorganic–Organic Layered Perovskite Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 10238-10247.	4.0	98
85	Surfaceâ€Enhanced Raman Scattering Using Microstructured Optical Fiber Substrates. Advanced Functional Materials, 2007, 17, 2024-2030.	7.8	97
86	Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nature Communications, 2018, 9, 4632.	5.8	96
87	Robotic microscopy for everyone: the OpenFlexure microscope. Biomedical Optics Express, 2020, 11, 2447.	1.5	95
88	Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS. ACS Applied Materials & Interfaces, 2014, 6, 17358-17363.	4.0	94
89	3D Bulk Ordering in Macroscopic Solid Opaline Films by Edgeâ€Induced Rotational Shearing. Advanced Materials, 2011, 23, 1540-1544.	11.1	93
90	Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets. ACS Applied Materials & amp; Interfaces, 2015, 7, 25227-25236.	4.0	93

#	Article	IF	CITATIONS
91	A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nature Materials, 2016, 15, 1074-1078.	13.3	91
92	Coherent Spectroscopy of Optically Gated Charged Single InGaAs Quantum Dots. Physical Review Letters, 2003, 90, 257402.	2.9	89
93	Reproducible SERRS from structured gold surfaces. Physical Chemistry Chemical Physics, 2007, 9, 6016.	1.3	89
94	Revealing Invisible Photonic Inscriptions: Images from Strain. ACS Applied Materials & Interfaces, 2015, 7, 13497-13502.	4.0	89
95	Compact strain-sensitive flexible photonic crystals for sensors. Applied Physics Letters, 2005, 87, 101902.	1.5	88
96	Room-Temperature Optical Picocavities below 1 nm ³ Accessing Single-Atom Geometries. Journal of Physical Chemistry Letters, 2018, 9, 7146-7151.	2.1	88
97	In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Letters, 2013, 13, 5985-5990.	4.5	85
98	Quantitative multiplexing with nano-self-assemblies in SERS. Scientific Reports, 2014, 4, 6785.	1.6	84
99	Embedded anisotropic microreflectors by femtosecond-laser nanomachining. Applied Physics Letters, 2002, 81, 196-198.	1.5	83
100	Relating SERS Intensity to Specific Plasmon Modes on Sphere Segment Void Surfaces. Journal of Physical Chemistry C, 2009, 113, 9284-9289.	1.5	83
101	Citrate Coordination and Bridging of Gold Nanoparticles: The Role of Gold Adatoms in AuNP Aging. ACS Nano, 2020, 14, 8689-8696.	7.3	82
102	Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films. Advanced Materials, 2004, 16, 90-93.	11.1	80
103	Shearâ€Induced Organization in Flexible Polymer Opals. Advanced Materials, 2008, 20, 1484-1487.	11.1	80
104	Tunable 3D Extended Selfâ€Assembled Gold Metamaterials with Enhanced Light Transmission. Advanced Materials, 2013, 25, 2713-2716.	11.1	80
105	In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 22571-22584.	1.5	80
106	Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation. Optics Express, 2004, 12, 5110.	1.7	79
107	How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles. Langmuir, 2012, 28, 8881-8890.	1.6	77
108	Coupled counterrotating polariton condensates in optically defined annular potentials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8770-8775.	3.3	76

#	Article	IF	CITATIONS
109	Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting. Journal of Physical Chemistry Letters, 2015, 6, 1099-1103.	2.1	75
110	Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly. ACS Photonics, 2016, 3, 1589-1595.	3.2	75
111	Engineering Gold Nanotubes with Controlled Length and Nearâ€Infrared Absorption for Theranostic Applications. Advanced Functional Materials, 2015, 25, 2117-2127.	7.8	74
112	Ordering in stretch-tunable polymeric opal fibers. Optics Express, 2011, 19, 3144.	1.7	73
113	Spontaneous Spin Bifurcations and Ferromagnetic Phase Transitions in a Spinor Exciton-Polariton Condensate. Physical Review X, 2015, 5, .	2.8	73
114	Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 704-710.	2.1	73
115	Raman and SERS spectroscopy of cucurbit[n]urils. Physical Chemistry Chemical Physics, 2010, 12, 10429.	1.3	71
116	Thermoâ€Responsive Actuation of a DNA Origami Flexor. Advanced Functional Materials, 2018, 28, 1706410.	7.8	71
117	Spin Order and Phase Transitions in Chains of Polariton Condensates. Physical Review Letters, 2017, 119, 067401.	2.9	66
118	Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics, 2017, 4, 1453-1458.	3.2	65
119	Quantitative Electrochemical SERS of Flavin at a Structured Silver Surface. Langmuir, 2008, 24, 7018-7023.	1.6	64
120	Stretch-tuneable dielectric mirrors and optical microcavities. Optics Express, 2010, 18, 4356.	1.7	63
121	Optical Trirefringence in Photonic Crystal Waveguides. Physical Review Letters, 2001, 86, 1526-1529.	2.9	62
122	Generalized circuit model for coupled plasmonic systems. Optics Express, 2015, 23, 33255.	1.7	62
123	Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 2021, 374, 1268-1271.	6.0	61
124	Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nature Communications, 2022, 13, 1651.	5.8	61
125	Probing Confined Phonon Modes in Individual CdSe Nanoplatelets Using Surface-Enhanced Raman Scattering. Physical Review Letters, 2014, 113, 087402.	2.9	60
126	Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes. Nano Letters, 2016, 16, 6850-6856.	4.5	60

#	Article	IF	CITATIONS
127	Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Applied Physics Letters, 2012, 100, .	1.5	57
128	Nanoscale Plasmonâ€Enhanced Spectroscopy in Memristive Switches. Small, 2016, 12, 1334-1341.	5.2	57
129	Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Applied Physics Letters, 2009, 95, 141111.	1.5	56
130	Fast Dynamic Color Switching in Temperatureâ€Responsive Plasmonic Films. Advanced Optical Materials, 2016, 4, 877-882.	3.6	56
131	Soft-x-ray wavelength shift induced by ionization effects in a capillary. Optics Letters, 2006, 31, 374.	1.7	55
132	Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation. ACS Nano, 2015, 9, 6110-6118.	7.3	55
133	Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Applied Physics Letters, 2010, 97, 163102.	1.5	53
134	Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting. Scientific Reports, 2015, 5, 16660.	1.6	53
135	Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps. ACS Photonics, 2016, 3, 471-477.	3.2	53
136	Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics, 2020, 7, 463-471.	3.2	53
137	Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discussions, 2015, 178, 185-193.	1.6	52
138	Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates. Journal of Materials Chemistry, 2009, 19, 3855.	6.7	51
139	Gold Nanorods with Subâ€Nanometer Separation using Cucurbit[<i>n</i>]uril for SERS Applications. Small, 2014, 10, 4298-4303.	5.2	50
140	Polymer-assisted self-assembly of gold nanoparticle monolayers and their dynamical switching. Nanoscale, 2016, 8, 15864-15869.	2.8	49
141	Polariton ring condensates and sunflower ripples in an expanding quantum liquid. Physical Review B, 2012, 85, .	1.1	48
142	Watching individual molecules flex within lipid membranes using SERS. Scientific Reports, 2014, 4, 5940.	1.6	48
143	Linking classical and molecular optomechanics descriptions of SERS. Faraday Discussions, 2017, 205, 31-65.	1.6	47
144	Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking. Physical Review X, 2018, 8, .	2.8	47

#	Article	IF	CITATIONS
145	Plasmon-directed polymerization: Regulating polymer growth with light. Nano Research, 2018, 11, 6384-6390.	5.8	47
146	Optimizing SERS from Gold Nanoparticle Clusters: Addressing the Near Field by an Embedded Chain Plasmon Model. Journal of Physical Chemistry C, 2016, 120, 10512-10522.	1.5	46
147	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Optics Express, 2006, 14, 1965.	1.7	45
148	Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides. Journal of Applied Physics, 2013, 114, 233511.	1.1	45
149	Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Microsystems and Nanoengineering, 2019, 5, 40.	3.4	45
150	Stretchable metal-elastomer nanovoids for tunable plasmons. Applied Physics Letters, 2009, 95, .	1.5	43
151	Oriented polaritons in strongly-coupled asymmetric double quantum well microcavities. Applied Physics Letters, 2011, 98, .	1.5	43
152	Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nature Electronics, 2020, 3, 687-693.	13.1	43
153	Nanowire-based multifunctional antireflection coatings for solar cells. Nanoscale, 2014, 6, 14555-14562.	2.8	42
154	Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities. Nano Letters, 2017, 17, 4840-4845.	4.5	42
155	Eliminating irreproducibility in SERS substrates. Journal of Raman Spectroscopy, 2021, 52, 412-419.	1.2	42
156	Stamping colloidal photonic crystals: a facile way towards complex pixel colour patterns for sensing and displays. Nanoscale, 2015, 7, 1857-1863.	2.8	41
157	Directional scattering from the glossy flower of <i>Ranunculus</i> : how the buttercup lights up your chin. Journal of the Royal Society Interface, 2012, 9, 1295-1301.	1.5	40
158	Electric-field-tuned color in photonic crystal elastomers. Applied Physics Letters, 2012, 100, 101902.	1.5	40
159	Polymer opals as novel photonic materials. Polymer International, 2013, 62, 1403-1407.	1.6	40
160	Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples. ACS Photonics, 2016, 3, 1888-1896.	3.2	38
161	One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale, 2016, 8, 14932-14942.	2.8	38
162	Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials. Physical Review Applied, 2014, 2, .	1.5	37

#	Article	IF	CITATIONS
163	Energy-resolved plasmonic chemistry in individual nanoreactors. Nature Nanotechnology, 2021, 16, 1378-1385.	15.6	37
164	SERS from molecules bridging the gap of particle-in-cavity structures. Chemical Communications, 2011, 47, 6335.	2.2	36
165	Electrokinetic Assembly of One-Dimensional Nanoparticle Chains with Cucurbit[7]uril Controlled Subnanometer Junctions. Nano Letters, 2013, 13, 6016-6022.	4.5	36
166	Optical Response of Metallic Nanoparticle Heteroaggregates with Subnanometric Gaps. Particle and Particle Systems Characterization, 2014, 31, 152-160.	1.2	36
167	Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nature Catalysis, 2021, 4, 157-163.	16.1	36
168	Simple Composite Dipole Model for the Optical Modes of Strongly-Coupled Plasmonic Nanoparticle Aggregates. Journal of Physical Chemistry C, 2012, 116, 25044-25051.	1.5	35
169	Actuating Single Nanoâ€Oscillators with Light. Advanced Optical Materials, 2018, 6, 1701281.	3.6	35
170	Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. Nano Letters, 2019, 19, 2051-2058.	4.5	35
171	Inducing Symmetry Breaking in Nanostructures: Anisotropic Stretch-Tuning Photonic Crystals. Physical Review Letters, 2010, 105, 233909.	2.9	34
172	Monitoring Early‣tage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. Small, 2016, 12, 1788-1796.	5.2	34
173	Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities. ACS Nano, 2020, 14, 10562-10568.	7.3	34
174	Selectively Patterning Polymer Opal Films via Microimprint Lithography. Advanced Optical Materials, 2014, 2, 1098-1104.	3.6	33
175	Revealing Nanostructures through Plasmon Polarimetry. ACS Nano, 2017, 11, 850-855.	7.3	33
176	In situmonitoring of the growth of ice films by laser picosecond acoustics. Journal of Applied Physics, 2006, 100, 073506.	1.1	32
177	Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities. Physical Review B, 2010, 82, .	1.1	32
178	Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities. ACS Photonics, 2017, 4, 2410-2418.	3.2	32
179	Selective CO production from aqueous CO ₂ using a Cu ₉₆ In ₄ catalyst and its integration into a bias-free solar perovskite–BiVO ₄ tandem device. Energy and Environmental Science, 2020, 13, 3536-3543.	15.6	32
180	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nature Communications, 2021, 12, 6519.	5.8	32

#	Article	IF	CITATIONS
181	Excitons in a mirror: Formation of "optical bilayers―using MoS2 monolayers on gold substrates. Applied Physics Letters, 2014, 104, .	1.5	31
182	Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Letters, 2021, 21, 2512-2518.	4.5	31
183	Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of CsPbBr _{<i>x</i>} I _{3-x} Perovskite Nanocrystals. Journal of the American Chemical Society, 2022, 144, 12102-12115.	6.6	31
184	Scalable Cylindrical Metallodielectric Metamaterials. Advanced Materials, 2009, 21, 3933-3936.	11.1	30
185	Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids. Optics Express, 2009, 17, 13298.	1.7	30
186	Selfâ€Aligned Colloidal Lithography for Controllable and Tuneable Plasmonic Nanogaps. Small, 2015, 11, 2139-2143.	5.2	30
187	Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media. Materials, 2017, 10, 688.	1.3	30
188	Coexistence of low threshold lasing and strong coupling in microcavities. Journal of Applied Physics, 2004, 95, 2487-2489.	1.1	29
189	Watching Single Nanoparticles Grow in Real Time through Supercontinuum Spectroscopy. Small, 2013, 9, 3743-3747.	5.2	29
190	Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization. Macromolecules, 2017, 50, 6255-6262.	2.2	29
191	Electrical Tuning of Nonlinearities in Exciton-Polariton Condensates. Physical Review Letters, 2018, 121, 037401.	2.9	29
192	Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates. Physical Review B, 2012, 85, .	1.1	28
193	Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices. Physical Review Letters, 2017, 119, 227401.	2.9	28
194	Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission. Nature Communications, 2020, 11, 682.	5.8	28
195	Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Physical Review B, 2015, 91, .	1.1	27
196	Nanoassembly of Polydisperse Photonic Crystals Based on Binary and Ternary Polymer Opal Alloys. Advanced Optical Materials, 2016, 4, 1494-1500.	3.6	27
197	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	1.6	27
198	Inhibiting Analyte Theft in Surface-Enhanced Raman Spectroscopy Substrates: Subnanomolar Quantitative Drug Detection. ACS Sensors, 2019, 4, 2988-2996.	4.0	27

#	Article	IF	CITATIONS
199	Cascaded nanooptics to probe microsecond atomic-scale phenomena. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14819-14826.	3.3	27
200	Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates. Physical Review Letters, 2016, 116, 106403.	2.9	26
201	The Crucial Role of Charge in Thermoresponsiveâ€Polymerâ€Assisted Reversible Dis/Assembly of Gold Nanoparticles. Advanced Optical Materials, 2018, 6, 1701270.	3.6	26
202	Light-Induced Coalescence of Plasmonic Dimers and Clusters. ACS Nano, 2020, 14, 4982-4987.	7.3	26
203	Quantum Tunneling Induced Optical Rectification and Plasmon-Enhanced Photocurrent in Nanocavity Molecular Junctions. ACS Nano, 2021, 15, 14535-14543.	7.3	26
204	Parametric amplification and polariton liquids in semiconductor microcavities. Physica Status Solidi (B): Basic Research, 2005, 242, 2210-2223.	0.7	24
205	Electrodeposition of mesoporous CdTe films with the aid of citric acid from lyotropic liquid crystalline phases. Journal of Materials Chemistry, 2006, 16, 3207.	6.7	24
206	Interplay of index contrast with periodicity in polymer photonic crystals. Applied Physics Letters, 2011, 99, .	1.5	24
207	Molecules in the mirror: how SERS backgrounds arise from the quantum method of images. Physical Chemistry Chemical Physics, 2014, 16, 6544-6549.	1.3	24
208	Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials. Scientific Reports, 2015, 5, 8313.	1.6	24
209	Hot electron science in plasmonics and catalysis: what we argue about. Faraday Discussions, 2019, 214, 501-511.	1.6	24
210	Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials. Advanced Materials, 2019, 31, 1803478.	11.1	24
211	Nanoscopy through a plasmonic nanolens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2275-2281.	3.3	24
212	Mapping SERS in CB:Au Plasmonic Nanoaggregates. ACS Photonics, 2017, 4, 2681-2686.	3.2	23
213	Lightâ€Actuated Anisotropic Microactuators from CNT/Hydrogel Nanocomposites. Advanced Optical Materials, 2022, 10, .	3.6	23
214	Self-Assembled Liposomes Enhance Electron Transfer for Efficient Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 9399-9412.	6.6	23
215	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. Optics Express, 2006, 14, 11964.	1.7	22
216	Breaking the mould: Casting on the nanometre scale. Nature Materials, 2006, 5, 2-5.	13.3	22

#	Article	IF	CITATIONS
217	Disentangling the Peak and Background Signals in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2012, 116, 6184-6190.	1.5	22
218	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	1.6	22
219	Dynamic―and Lightâ€Switchable Selfâ€Assembled Plasmonic Metafilms. Advanced Optical Materials, 2018, 6, 1800208.	3.6	22
220	Controlling Selfâ€Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing. Small, 2018, 14, e1802401.	5.2	21
221	Thermochromic polymer opals. Applied Physics Letters, 2009, 95, .	1.5	20
222	Capillaryâ€Forceâ€Assisted Optical Tuning of Coupled Plasmons. Advanced Materials, 2015, 27, 6457-6461.	11.1	20
223	Zeroâ€Reflectance Metafilms for Optimal Plasmonic Sensing. Advanced Optical Materials, 2016, 4, 328-335.	3.6	20
224	Smart supramolecular sensing with cucurbit[<i>n</i>]urils: probing hydrogen bonding with SERS. Faraday Discussions, 2017, 205, 505-515.	1.6	20
225	Tuning of Structural Colors Like a Chameleon Enabled by Shapeâ€Memory Polymers. Macromolecular Rapid Communications, 2018, 39, e1800518.	2.0	20
226	Optical probes of molecules as nano-mechanical switches. Nature Communications, 2020, 11, 5905.	5.8	20
227	FullyPrinted Flexible Plasmonic Metafilms with Directional Color Dynamics. Advanced Science, 2021, 8, 2002419.	5.6	20
228	Electrically conductive polymeric photonic crystals. Soft Matter, 2012, 8, 6280.	1.2	19
229	Efficient Generation of Two-Photon Excited Phosphorescence from Molecules in Plasmonic Nanocavities. Nano Letters, 2020, 20, 4653-4658.	4.5	19
230	Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode. Nanoscale, 2021, 13, 1938-1954.	2.8	19
231	Perpendicular coupling to in-plane photonics using arc waveguides fabricated via two-photon polymerization. Applied Physics Letters, 2012, 100, .	1.5	18
232	Direct Visualization of Symmetry Breaking During Janus Nanoparticle Formation. Small, 2012, 8, 2698-2703.	5.2	18
233	Nanostripe length dependence of plasmon-induced material deformations. Optics Letters, 2013, 38, 2256.	1.7	18
234	Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Physical Review B, 2014, 90, .	1.1	18

Jeremy J Baumberg

#	Article	IF	CITATIONS
235	Oscillatory solitons and time-resolved phase locking of two polariton condensates. New Journal of Physics, 2014, 16, 103039.	1.2	18
236	Thermo-responsive plasmonic systems: old materials with new applications. Nanoscale Advances, 2020, 2, 1410-1416.	2.2	18
237	Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities. Light: Science and Applications, 2022, 11, 19.	7.7	18
238	Exciton-light coupling in quantum wells: From motional narrowing to superradiance. Physical Review B, 1998, 57, R12697-R12700.	1.1	17
239	Tunable resonant optical microcavities by self-assembled templating. Optics Letters, 2004, 29, 1500.	1.7	17
240	SERS from two-tier sphere segment void substrates. Physical Chemistry Chemical Physics, 2011, 13, 16661.	1.3	17
241	Applications of plasmonics: general discussion. Faraday Discussions, 2015, 178, 435-466.	1.6	17
242	Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering. ACS Photonics, 2021, 8, 2868-2875.	3.2	17
243	Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra. Nature Communications, 2021, 12, 6759.	5.8	17
244	Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2022, 55, 1889-1899.	7.6	17
245	Semiconductor microcavities: half light, half matter. Physics World, 2002, 15, 37-41.	0.0	16
246	Interacting plasmonic nanostructures beyond the quasi-static limit: a "circuit―model. Optics Express, 2013, 21, 31105.	1.7	16
247	The rheology and processing of "edge sheared―colloidal polymer opals. Journal of Rheology, 2014, 58, 397-409.	1.3	16
248	Tuning the Energy of a Polariton Condensate via Bias-Controlled Rabi Splitting. Physical Review Applied, 2014, 2, .	1.5	16
249	Symmetry breaking polymerization: one-pot synthesis of plasmonic hybrid Janus nanoparticles. Nanoscale, 2015, 7, 10344-10349.	2.8	16
250	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	1.6	16
251	Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling. Physical Review Letters, 2017, 119, 023901.	2.9	16
252	Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. Nature Nanotechnology, 2021, 16, 1121-1129.	15.6	16

#	Article	IF	CITATIONS
253	Direct assembly of three-dimensional mesh plasmonic rolls. Applied Physics Letters, 2012, 100, 193107.	1.5	15
254	Visualizing Electromagnetic Fields at the Nanoscale by Single Molecule Localization. Nano Letters, 2015, 15, 3217-3223.	4.5	15
255	Breaking the Selection Rules of Spin-Forbidden Molecular Absorption in Plasmonic Nanocavities. ACS Photonics, 2020, 7, 2337-2342.	3.2	15
256	Anisotropic Resonant Scattering from Polymer Photonic Crystals. Advanced Materials, 2012, 24, OP305-8.	11.1	14
257	Co-catalytic Absorption Layers for Controlled Laser-Induced Chemical Vapor Deposition of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2014, 6, 4025-4032.	4.0	14
258	Scalable Microaccordion Mesh for Deformable and Stretchable Metallic Films. Physical Review Applied, 2015, 4, .	1.5	14
259	Blocking Hot Electron Emission by SiO ₂ Coating Plasmonic Nanostructures. Journal of Physical Chemistry C, 2017, 121, 18795-18799.	1.5	14
260	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
261	Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures. Scientific Reports, 2020, 10, 2615.	1.6	14
262	Plasmon-Induced Trap State Emission from Single Quantum Dots. Physical Review Letters, 2021, 126, 047402.	2.9	14
263	Solvent-Resistant Ultraflat Gold Using Liquid Glass. Langmuir, 2012, 28, 1347-1350.	1.6	13
264	Optical response of threaded chain plasmons: from capacitive chains to continuous nanorods. Optics Express, 2014, 22, 23851.	1.7	13
265	A high transmission wave-guide wire network made by self-assembly. Nanoscale, 2015, 7, 1032-1036.	2.8	13
266	Facile Fabrication of Spherical Nanoparticleâ€Tipped AFM Probes for Plasmonic Applications. Particle and Particle Systems Characterization, 2015, 32, 182-187.	1.2	13
267	Multivalent Patchy Colloids for Quantitative 3D Self-Assembly Studies. Langmuir, 2020, 36, 2403-2418.	1.6	13
268	Optical suppression of energy barriers in single molecule-metal binding. Science Advances, 2022, 8, .	4.7	13
269	Mapping gigahertz vibrations in a plasmonic–phononic crystal. New Journal of Physics, 2013, 15, 023013.	1.2	12
270	Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities. EPJ Applied Metamaterials, 2018, 5, 6.	0.8	12

#	Article	IF	CITATIONS
271	Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy. Science Advances, 2021, 7, .	4.7	12
272	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	1.6	11
273	Vibrational Stark Effects: Ionic Influence on Local Fields. Journal of Physical Chemistry Letters, 2022, 13, 4905-4911.	2.1	11
274	Observation of the developing optical continuum along a nonlinear waveguide. Optics Letters, 2006, 31, 2459.	1.7	10
275	Highly Reflective GaN-Based Air-Gap Distributed Bragg Reflectors Fabricated Using AlInN Wet Etching. Applied Physics Express, 2009, 2, 121003.	1.1	10
276	Ultrafast nonlinearities of minibands in metallodielectric Bragg resonators. Physical Review B, 2011, 84, .	1.1	10
277	Harnessing nonlinear rubber swelling for bulk synthesis of anisotropic hybrid nanoparticles. Journal of Materials Chemistry C, 2014, 2, 8745-8749.	2.7	10
278	Plasmon-induced optical control over dithionite-mediated chemical redox reactions. Faraday Discussions, 2019, 214, 455-463.	1.6	10
279	Observation of inversion, hysteresis, and collapse of spin in optically trapped polariton condensates. Physical Review B, 2019, 99, .	1.1	10
280	Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs. ACS Photonics, 2021, 8, 2811-2817.	3.2	10
281	Chromaticity of structural color in polymer thin film photonic crystals. Optics Express, 2020, 28, 36219.	1.7	10
282	Imprinting localized plasmons for enhanced solar cells. Nanotechnology, 2012, 23, 385202.	1.3	9
283	Fabricating large-area metallic woodpile photonic crystals using stacking and rolling. Nanotechnology, 2013, 24, 305301.	1.3	9
284	Generating Lithographicallyâ€ <scp>D</scp> efined Tunable Printed Structural Color. Advanced Engineering Materials, 2013, 15, 948-953.	1.6	9
285	Implementation of the Natural Mode Analysis for Nanotopologies Using a Volumetric Method of Moments (V-MoM) Algorithm. IEEE Photonics Journal, 2014, 6, 1-13.	1.0	9
286	Motile Artificial Chromatophores: Lightâ€Triggered Nanoparticles for Microdroplet Locomotion and Color Change. Advanced Optical Materials, 2019, 7, 1900951.	3.6	9
287	Group velocity measurement using spectral interference in near-field scanning optical microscopy. Applied Physics Letters, 2006, 89, 051101.	1.5	8
288	Multilayer mirrored bubbles with spatially-chirped and elastically-tuneable optical bandgaps. Optics Express, 2012, 20, 6421.	1.7	8

#	Article	IF	CITATIONS
289	Metamaterial filter for the near-visible spectrum. Applied Physics Letters, 2012, 101, 083106.	1.5	8
290	Real-time measurements of crystallization processes in viscoelastic polymeric photonic crystals. Physical Review E, 2015, 92, 052315.	0.8	8
291	Localized Nanoresonator Mode in Plasmonic Microcavities. Physical Review Letters, 2020, 124, 093901.	2.9	8
292	Dynamics of deterministically positioned singleâ€bond surfaceâ€enhanced Raman scattering from DNA origami assembled in plasmonic nanogaps. Journal of Raman Spectroscopy, 2021, 52, 348-354.	1.2	8
293	Probing molecules by surface-enhanced Raman spectroscopy. , 2006, , .		7
294	From microns to kissing contact: Dynamic positioning of two nano-systems. Applied Physics Letters, 2011, 99, 053110.	1.5	7
295	Near-Field Optical Drilling of Sub-λ Pits in Thin Polymer Films. ACS Photonics, 2017, 4, 1292-1297.	3.2	7
296	Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On hip Gas Encapsulation. Small, 2018, 14, e1801599.	5.2	7
297	Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials, 2021, 4, 6299-6305.	2.4	7
298	SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation. ACS Sensors, 2021, 6, 4507-4514.	4.0	7
299	Generation of Quantized Polaritons below the Condensation Threshold. Physical Review Letters, 2018, 121, 067401.	2.9	6
300	Stochastic spin flips in polariton condensates: nonlinear tuning from GHz to sub-Hz. New Journal of Physics, 2018, 20, 075008.	1.2	6
301	Polariton traps in semiconductor microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 385-389.	1.3	5
302	Sharp ornered Liquid Drops by Wetting of Nanoscale Features. Small, 2008, 4, 2140-2142.	5.2	5
303	Nanotemplated lead telluride thin films. Microporous and Mesoporous Materials, 2009, 118, 403-407.	2.2	5
304	Electrically controlled strong coupling and polariton bistability in double quantum wells. Physical Review B, 2013, 87, .	1.1	5
305	Rapid microcantilever-thickness determination by optical interferometry. Measurement Science and Technology, 2014, 25, 015202.	1.4	5
306	Wiry matter–light coupling. Nature Materials, 2017, 16, 877-878.	13.3	5

#	Article	IF	CITATIONS
307	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	1.6	5
308	Contact angle as a powerful tool in anisotropic colloid synthesis. Journal of Colloid and Interface Science, 2021, 581, 417-426.	5.0	5
309	An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media. Materials, 2021, 14, 5298.	1.3	5
310	Enhanced excitation and readout of plasmonic cavity modes in NPoM via SiN waveguides for on-chip SERS. Optics Express, 2022, 30, 4553.	1.7	5
311	Quantum plasmonics, gain and spasers: general discussion. Faraday Discussions, 2015, 178, 325-334.	1.6	4
312	Morphology dependence of nanoparticle-on-mirror geometries: A quasinormal mode analysis. EPJ Applied Metamaterials, 2022, 9, 3.	0.8	4
313	Acoustic phonon pulse generation and detection in GaAs/Al0.3Ga0.7As quantumwells. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2749-2752.	0.8	3
314	Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering applications , 2006, , .		3
315	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
316	Polarisation-selective hotspots in metallic ring stack arrays. Optics Express, 2016, 24, 3663.	1.7	3
317	Spectrally resolved surface plasmon resonance dispersion using half-ball optics. Applied Physics Letters, 2017, 111, 201102.	1.5	3
318	Out-of-Plane Nanoscale Reorganization of Lipid Molecules and Nanoparticles Revealed by Plasmonic Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 2875-2882.	2.1	3
319	Nanofluidic Traps by Two-Photon Fabrication for Extended Detection of Single Macromolecules and Colloids in Solution. ACS Applied Nano Materials, 2022, 5, 1995-2005.	2.4	3
320	Magnetic switch shows its metal. Physics World, 1993, 6, 31-32.	0.0	2
321	Low-noise self-phase modulation continuum generation in high index tapered planar waveguide at 1040 nm. , 2005, , .		2
322	Surface Enhanced Raman Scattering using Metal Modified Microstructured Optical Fibre Substrates. , 2006, , .		2
323	Surface enhanced Raman scattering using metal modified microstructured optical fiber substrates. , 2006, , .		2
324	Nanometer control in plasmonic systems through discrete layer-by-layer macrocycle–cation deposition. Nanoscale, 2020, 12, 8706-8710.	2.8	2

#	Article	IF	CITATIONS
325	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
326	Single photon multiclock lock-in detection by picosecond timestamping. Optica, 2021, 8, 1646.	4.8	2
327	When photonic crystals meet Fibonacci. Physics World, 2003, 16, 24-24.	0.0	1
328	Octave-wide continuum generation in high-index planar waveguide by 1.5-μm femtosecond pump. , 2005, 5714, 195.		1
329	Generalized ultrafast dispersion scans of continuum generation induced by sub-50fs chirped pulses in highly nonlinear tapered planar waveguides. , 2005, 5714, 200.		1
330	Terahertz Ultrasonic Generation and Detection in GaAs/AlGaAs Quantum Wells. Japanese Journal of Applied Physics, 2005, 44, 4477-4479.	0.8	1
331	Anisotropic localised plasmons in rectangular pits. , 2006, , .		1
332	Molecular imaging with surface-enhanced CARS on nanostructures. Proceedings of SPIE, 2012, , .	0.8	1
333	DNA origami based assembly of gold nanoparticle dimers for SERS detection. Proceedings of SPIE, 2015,	0.8	1
334	Optical Suppression of Energy Barriers in Single Molecule-Metal Binding. , 2021, , .		1
335	Thermochromic Polymer Opals. , 2010, , .		1
336	OVERVIEW OF MICROCAVITIES. , 2007, , 1-22.		1
337	Scalable Cylindrical Metallo-Dielectric Metamaterials. , 2010, , .		1
338	Shear Ordering in Polymer Photonic Crystals. , 2010, , .		1
339	Weak-coupling microcavities. , 2017, , .		1
340	Trapping plasmonic nanoparticles with MHz electric fields. Applied Physics Letters, 2022, 120, 203303.	1.5	1
341	Optical coherence in semiconductor quantum structures. Current Opinion in Solid State and Materials Science, 1998, 3, 181-184.	5.6	0
342	Ultrafast surface plasmon polariton dynamics in multilayer waveguide structures. , 2004, , ITuB4.		0

#	Article	IF	CITATIONS
343	Probing electron wavefunctions in quantum wells using ultrafast coherent acoustic phonon generation. , 2004, , IMJ6.		0
344	Optical Properties of Nanostructured Mesoporous Semiconductor Films. Materials Research Society Symposia Proceedings, 2004, 822, S5.6.1.	0.1	0
345	Experimental and theoretical investigation of loss issues in photonic crystal slab waveguide devices. , 2005, 5733, 58.		0
346	Broadband angular measurement of rectangular photonic crystal superprisms. , 2005, 5733, 67.		0
347	Picosecond acoustics in semiconductor quantum wells (Invited Paper). , 2005, , .		0
348	Parametric Amplification and Polariton Liquids in Semiconductor Microcavities. , 0, , 105-122.		0
349	Stretchable photonic crystals based on polymers. , 2006, , ThD6.		0
350	Tuning localized plasmons in nanostructured metamaterials for surface-enhanced Raman scattering applications. , 2006, , WB5.		0
351	Photonics of stretchable opals based on polymers. , 2006, , .		0
352	Spatio-temporal dynamics of coherent polaritons in a semiconductor microcavity. , 2006, , .		0
353	Tuning surface-enhanced raman scattering with resonant localised plasmons. , 2006, , .		0
354	Tailoring NanoMaterials for light-matter interactions. , 2007, , .		0
355	Tailoring NanoMaterials for light-matter interactions. , 2007, , .		0
356	Fabrication of Nano-Structured Gold Arrays by Guided Self-assembly for Plasmonics. Materials Research Society Symposia Proceedings, 2008, 1077, 40101.	0.1	0
357	Cavity-enhanced structural colour in extrudeable photonic crystals. , 2009, , .		0
358	Using nanocavity plasmons to improve solar cell efficiency. , 2009, , .		0
359	Ultrafast Control of polariton stimulated scattering in semiconductor microcavities. , 2010, , .		0
360	Temperature dependence of surface-enhanced Raman scattering on nanostructured plasmonic surfaces. , 2011, , .		0

#	Article	IF	CITATIONS
361	Tuneable plasmonics from self-assembling soft nanophotonics. , 2011, , .		0
362	Microcavity Polaritonics: interacting quantum liquids on a chip. , 2012, , .		0
363	Flexible and Self-Assembled Plasmonics. Handbook of Surface Science, 2014, , 381-398.	0.3	0
364	Hybridisation of antenna and cavity modes in nanoparticle-on-mirror plasmonic nanocavities. , 2015, , .		0
365	Plasmonics of Ultranarrow Gaps Shunted by Organic Conductive Junctions. , 2015, , .		0
366	Visualisation of plasmonic fields at the nanoscale with single molecule localisation microscopy. Proceedings of SPIE, 2015, , .	0.8	0
367	Molecules in plasmonic nano-cavities. , 2017, , .		0
368	Reality science. Physics World, 2018, 31, 48-48.	0.0	0
369	A Lightâ€Switchable Liquid Metamaterial Mirror. Advanced Optical Materials, 2020, 8, 2000396.	3.6	0
370	Molecular Optomechanical Springs for Infrared Metasurface Detectors. , 2021, , .		0
371	Templated metal nano-resonators for tunable optical microcavities. , 2004, , .		0
372	Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum Dots. , 2005, , 101-149.		0
373	STRONG COUPLING: RESONANT EFFECTS. , 2007, , 251-278.		0
374	STRONG COUPLING: POLARITON BOSE CONDENSATION., 2007, , 279-344.		0
375	QUANTUM DESCRIPTION OF LIGHT. , 2007, , 75-116.		0
376	CLASSICAL DESCRIPTION OF LIGHT. , 2007, , 23-74.		0
377	Templated self-assembly and nano-plasmonics of nano-void surfaces. , 2008, , .		0
378	Opto-Elastic Anisotropy in Stretched Polymer Photonic Crystals. , 2010, , .		0

#	Article	IF	CITATIONS
379	Surface-Enhanced Raman Scattering of Semiconducting Quantum Dots on Nanostructured Plasmonic Surfaces. , 2010, , .		0
380	Stretch-tuneable Dielectric Mirrors and Microcavities. , 2010, , .		0
381	Controlling Plasmonic Interactions with Nanometer-scale Precision. , 2011, , .		0
382	Tunable 3D Plasmonic Swiss Rolls. , 2011, , .		0
383	Tracking molecular binding to nanostructures using CO2 snow jet on plasmonic SERS substrates. , 2011, , .		0
384	The Future Prospects of Room-Temperature Polariton Lasers. Springer Series in Solid-state Sciences, 2012, , 329-348.	0.3	0
385	Microcavity Polaritonics: Optically-Steering Interacting Quantum Liquids on a Chip. , 2013, , .		0
386	Ultrafast Coherent Carrier Control in Quantum Structures. , 1996, , 209-212.		0
387	Polariton Devices. , 2017, , .		0
388	Quantum Polaritonic. , 2017, , .		0
389	Spin and polarisation. , 2017, , .		0
390	Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods. Physical Review X, 2021, 11, .	2.8	0