Wei Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6992145/publications.pdf

Version: 2024-02-01

82	2,741	30	49
papers	citations	h-index	g-index
82	82	82	2572
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in potentiometric biosensors. TrAC - Trends in Analytical Chemistry, 2020, 124, 115803.	5.8	185
2	Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensors and Actuators B: Chemical, 2009, 141, 544-550.	4.0	172
3	Applications of nanomaterials in potentiometric sensors. TrAC - Trends in Analytical Chemistry, 2013, 51, 79-86.	5 . 8	158
4	A Threeâ€Dimensional Origami Paperâ€Based Device for Potentiometric Biosensing. Angewandte Chemie - International Edition, 2016, 55, 13033-13037.	7.2	142
5	Improved Detection Limits and Unbiased Selectivity Coefficients Obtained by Using Ion-Exchange Resins in the Inner Reference Solution of Ion-Selective Polymeric Membrane Electrodes. Analytical Chemistry, 2000, 72, 3236-3240.	3.2	115
6	Potentiometric Sensing of Neutral Species Based on a Uniformâ€Sized Molecularly Imprinted Polymer as a Receptor. Angewandte Chemie - International Edition, 2010, 49, 2556-2559.	7.2	110
7	Molecularly imprinted polymer-based potentiometric sensors. TrAC - Trends in Analytical Chemistry, 2020, 130, 115980.	5. 8	65
8	Potentiometric Aptasensing of <i>Listeria monocytogenes</i> Using Protamine as an Indicator. Analytical Chemistry, 2014, 86, 9412-9416.	3.2	63
9	Musselâ€Inspired Surfaceâ€Imprinted Sensors for Potentiometric Labelâ€Free Detection of Biological Species. Angewandte Chemie - International Edition, 2017, 56, 6833-6837.	7.2	63
10	Current-Driven Ion Fluxes of Polymeric Membrane Ion-Selective Electrode for Potentiometric Biosensing. Journal of the American Chemical Society, 2009, 131, 14640-14641.	6.6	61
11	All-Solid-State Polymeric Membrane Ion-Selective Miniaturized Electrodes Based on a Nanoporous Gold Film as Solid Contact. Analytical Chemistry, 2014, 86, 11038-11044.	3.2	60
12	DNA Nanostructure-Based Magnetic Beads for Potentiometric Aptasensing. Analytical Chemistry, 2015, 87, 6465-6469.	3.2	53
13	A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Analytica Chimica Acta, 2015, 853, 291-296.	2.6	52
14	Assembly of carbon nanotubes on a nanoporous gold electrode for acetylcholinesterase biosensor design. Sensors and Actuators B: Chemical, 2014, 199, 284-290.	4.0	49
15	An all-solid-state polymeric membrane Pb2+-selective electrode with bimodal pore C60 as solid contact. Analytica Chimica Acta, 2015, 876, 49-54.	2.6	46
16	Soluble Molecularly Imprinted Polymer-Based Potentiometric Sensor for Determination of Bisphenol AF. Analytical Chemistry, 2018, 90, 657-662.	3.2	44
17	Potentiometric sensor for determination of neutral bisphenol A using a molecularly imprinted polymer as a receptor. Analytical and Bioanalytical Chemistry, 2013, 405, 4931-4936.	1.9	43
18	Solid-contact K+-selective electrode based on three-dimensional molybdenum sulfide nanoflowers as ion-to-electron transducer. Sensors and Actuators B: Chemical, 2016, 234, 80-83.	4.0	43

#	Article	IF	Citations
19	A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Analytica Chimica Acta, 2017, 982, 72-77.	2.6	42
20	Label-Free and Substrate-Free Potentiometric Aptasensing Using Polycation-Sensitive Membrane Electrodes. Analytical Chemistry, 2012, 84, 2055-2061.	3.2	41
21	Molecularly imprinted nanoparticles based potentiometric sensor with a nanomolar detection limit. Sensors and Actuators B: Chemical, 2013, 188, 972-977.	4.0	37
22	An all-solid-state potentiometric microelectrode for detection of copper in coastal sediment pore water. Sensors and Actuators B: Chemical, 2019, 279, 369-373.	4.0	35
23	An effective solid contact for an all-solid-state polymeric membrane Cd 2+ -selective electrode: Three-dimensional porous graphene-mesoporous platinum nanoparticle composite. Sensors and Actuators B: Chemical, 2017, 239, 438-446.	4.0	34
24	Dual-Analyte Chronopotentiometric Aptasensing Platform Based on a G-Quadruplex/Hemin DNAzyme and Logic Gate Operations. Analytical Chemistry, 2019, 91, 3170-3176.	3.2	34
25	A solid-contact Pb2+-selective polymeric membrane electrode with Nafion-doped poly(pyrrole) as ion-to-electron transducer. Journal of Solid State Electrochemistry, 2012, 16, 499-504.	1.2	33
26	A Polymeric Liquid Membrane Electrode Responsive to 3,3′,5,5′-Tetramethylbenzidine Oxidation for Sensitive Peroxidase/Peroxidase Mimetic-Based Potentiometric Biosensing. Analytical Chemistry, 2014, 86, 4416-4422.	3.2	33
27	Paper-based microfluidic sampling and separation of analytes for potentiometric ion sensing. Sensors and Actuators B: Chemical, 2017, 243, 346-352.	4.0	33
28	Improving the Biocompatibility of Polymeric Membrane Potentiometric Ion Sensors by Using a Mussel-Inspired Polydopamine Coating. Analytical Chemistry, 2019, 91, 6424-6429.	3.2	33
29	A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene) Tj ETQq1 1	0.784314 2.6	rgBT_/Overlo
30	Polymeric membrane ion-selective electrodes with anti-biofouling properties by surface modification of silver nanoparticles. Sensors and Actuators B: Chemical, 2021, 328, 129014.	4.0	32
31	Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode. Biosensors and Bioelectronics, 2013, 47, 559-565.	5.3	31
32	An All-solid-state Cd2+-selective electrode with a low detection limit. Sensors and Actuators B: Chemical, 2011, 155, 919-922.	4.0	30
33	Synthesis of MoS 2 nanoparticles using MoO 3 nanobelts as precursor via a PVP-assisted hydrothermal method. Materials Letters, 2016, 182, 347-350.	1.3	29
34	Polymeric Membrane Neutral Phenol-Sensitive Electrodes for Potentiometric G-Quadruplex/Hemin DNAzyme-Based Biosensing. Analytical Chemistry, 2013, 85, 1945-1950.	3.2	28
35	Potentiometric Detection of <i>Listeria monocytogenes</i> via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Analytical Chemistry, 2018, 90, 13600-13606.	3.2	28
36	Trace-Level Potentiometric Detection in the Presence of a High Electrolyte Background. Analytical Chemistry, 2012, 84, 10509-10513.	3.2	27

#	Article	IF	CITATIONS
37	Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide. Analytical Chemistry, 2019, 91, 13268-13274.	3.2	27
38	Pulsed Galvanostatic Control of a Polymeric Membrane Ion-Selective Electrode for Potentiometric Immunoassays. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9488-9493.	4.0	26
39	Alternative coulometric signal readout based on a solid-contact ion-selective electrode for detection of nitrate. Analytica Chimica Acta, 2020, 1129, 136-142.	2.6	26
40	Potentiometric Sensor Based on Molecularly Imprinted Polymers for Rapid Determination of Clenbuterol in Pig Urine. Chinese Journal of Analytical Chemistry, 2012, 40, 354-358.	0.9	23
41	Sequential and Selective Detection of Two Molecules with a Single Solid-Contact Chronopotentiometric Ion-Selective Electrode. Analytical Chemistry, 2018, 90, 1734-1739.	3.2	23
42	Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors. Scientific Reports, 2015, 5, 12462.	1.6	21
43	A solid-contact Ca2+-selective electrode based on an inorganic redox buffer of Ag@AgCl/1-tetradecyl-3-methylimidazolium chloride as ion-to-electron transducer. Talanta, 2020, 209, 120570.	2.9	21
44	Stimulus-Responsive Imprinted Polymer-Based Potentiometric Sensor for Reversible Detection of Neutral Phenols. Analytical Chemistry, 2020, 92, 4284-4291.	3.2	21
45	An Integrated Screen-Printed Potentiometric Strip for Determination of Ca ²⁺ in Seawater. Journal of the Electrochemical Society, 2019, 166, B589-B593.	1.3	20
46	Potentiometric aptasensing of small molecules based on surface charge change. Sensors and Actuators B: Chemical, 2018, 259, 463-466.	4.0	19
47	An all-solid-state imprinted polymer-based potentiometric sensor for determination of bisphenol S. RSC Advances, 2016, 6, 73308-73312.	1.7	18
48	Photoelectric current as a highly sensitive readout for potentiometric sensors. Chemical Communications, 2020, 56, 3879-3882.	2.2	18
49	Magneticâ€Fieldâ€Driven Extraction of Bioreceptors into Polymeric Membranes for Labelâ€Free Potentiometric Biosensing. Angewandte Chemie - International Edition, 2021, 60, 2609-2613.	7.2	18
50	Synthesis and characterization of monoazathiacrown ethers as ionophores for polymeric membrane silver-selective electrodes. Talanta, 2010, 81, 1056-1062.	2.9	17
51	A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water. Sensors, 2013, 13, 6936-6945.	2.1	17
52	Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode. Analytica Chimica Acta, 2020, 1101, 50-57.	2.6	17
53	Current pulse based ion-selective electrodes for chronopotentiometric determination of calcium in seawater. Analytica Chimica Acta, 2018, 1031, 67-74.	2.6	16
54	Polycation-sensitive membrane electrode for determination of heparin based on controlled release of protamine. Analyst, The, 2012, 137, 1944.	1.7	15

#	Article	IF	Citations
55	Highly sensitive potentiometric sensor for detection of mercury in Clâ^'-rich samples. Sensors and Actuators B: Chemical, 2015, 208, 267-272.	4.0	15
56	Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a highly sensitive readout. Biosensors and Bioelectronics, 2022, 200, 113923.	5.3	14
57	Potentiometric detection of polyions based on functionalized magnetic nanoparticles. Chinese Chemical Letters, 2010, 21, 1378-1381.	4.8	13
58	Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing. Chemical Communications, 2012, 48, 4073.	2.2	13
59	Fine-scale in-situ measurement of lead ions in coastal sediment pore water based on an all-solid-state potentiometric microsensor. Analytica Chimica Acta, 2019, 1073, 39-44.	2.6	13
60	Thin polymeric membrane ion-selective electrodes for trace-level potentiometric detection. Analytica Chimica Acta, 2020, 1139, 1-7.	2.6	13
61	Self-Sterilizing Polymeric Membrane Sensors Based on 6-Chloroindole Release for Prevention of Marine Biofouling. Analytical Chemistry, 2020, 92, 12132-12136.	3.2	13
62	Enhancing the Oil-Fouling Resistance of Polymeric Membrane Ion-Selective Electrodes by Surface Modification of a Zwitterionic Polymer-Based Oleophobic Self-Cleaning Coating. Analytical Chemistry, 2021, 93, 6932-6937.	3.2	13
63	Anti-fouling polymeric membrane ion-selective electrodes. TrAC - Trends in Analytical Chemistry, 2022, 150, 116572.	5.8	13
64	Pulsed galvanostatic control of a solid-contact ion-selective electrode for potentiometric biosensing of microcystin-LR. Sensors and Actuators B: Chemical, 2016, 230, 785-790.	4.0	12
65	A freestanding all-solid-state polymeric membrane Cu2+-selective electrode based on three-dimensional graphene sponge. Analytica Chimica Acta, 2019, 1068, 11-17.	2.6	11
66	An integrated all-solid-state screen-printed potentiometric sensor based on a three-dimensional self-assembled graphene aerogel. Microchemical Journal, 2020, 159, 105453.	2.3	11
67	All-Solid-State Polymeric Membrane Ion-Selective Electrodes Based on NiCo ₂ S ₄ as a Solid Contact. Analytical Chemistry, 2022, 94, 3574-3580.	3.2	11
68	Tetra(<i>pâ€</i> tolyl)borateâ€Functionalized Solvent Polymeric Membrane: A Facile and Sensitive Sensing Platform for Peroxidase and Peroxidase Mimetics. Chemistry - A European Journal, 2013, 19, 9979-9986.	1.7	10
69	Optical Ion Sensing Platform Based on Potential-Modulated Release of Enzyme. Analytical Chemistry, 2017, 89, 3235-3239.	3.2	10
70	A magnetic field-directed self-assembly solid contact for construction of an all-solid-state polymeric membrane Ca 2+ -selective electrode. Analytica Chimica Acta, 2017, 989, 15-20.	2.6	10
71	Translating potentiometric detection into non-enzymatic amperometric measurement of H2O2. Talanta, 2021, 232, 122489.	2.9	10
72	Single-Piece Solid-Contact Polymeric Membrane Ion-Selective Electrodes for Silver Ion. Journal of the Electrochemical Society, 2013, 160, B91-B94.	1.3	9

#	Article	IF	CITATION
73	Multifunctional Molecularly Imprinted Receptor-Based Polymeric Membrane Potentiometric Sensor for Sensitive Detection of Bisphenol A. Analytical Chemistry, 2022, 94, 7795-7803.	3.2	9
74	A chronopotentiometric flow injection system for aptasensing of E. coli O157. Analytical Methods, 2015, 7, 825-829.	1.3	8
75	Magneto-controlled potentiometric assay for E. coli based on cleavage of peptide by outer-membrane protease T. Electrochimica Acta, 2021, 384, 138408.	2.6	7
76	Redox probe-based amperometric sensing for solid-contact ion-selective electrodes. Talanta, 2022, 239, 123114.	2.9	7
77	Chronopotentiometric aptasensing with signal amplification based on enzyme-catalyzed surface polymerization. Chemical Communications, 2020, 56, 13355-13358.	2.2	4
78	Light-driven ion extraction of polymeric membranes for on-demand Cu(II) sensing. Analytica Chimica Acta, 2021, 1176, 338756.	2.6	4
79	Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition. Frontiers in Chemistry, 2018, 6, 81.	1.8	3
80	Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. Analytical Methods, 2020, 12, 4422-4428.	1.3	2
81	Magneticâ€Fieldâ€Driven Extraction of Bioreceptors into Polymeric Membranes for Labelâ€Free Potentiometric Biosensing. Angewandte Chemie, 2021, 133, 2641-2645.	1.6	2
82	Towards potentiometric detection in nonaqueous media: Evaluation of the impacts of organic solvents on polymeric membrane ion-selective electrodes. Talanta, 2022, 241, 123238.	2.9	2