
Jinsong Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6992088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 2006, 313, 68-71.	6.0	818
2	Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extracts and Their Color Properties and Stability. Journal of Agricultural and Food Chemistry, 2005, 53, 2327-2332.	2.4	410
3	Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 2009, 49, 106-111.	1.8	390
4	Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 2015, 172, 433-440.	4.2	283
5	Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding. PLoS ONE, 2014, 9, e85106.	1.1	229
6	Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 2018, 240, 212-221.	4.2	209
7	Physical Properties of Octenyl Succinic Anhydride Modified Rice, Wheat, and Potato Starches. Journal of Agricultural and Food Chemistry, 2003, 51, 2283-2287.	2.4	202
8	ldentification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 2014, 59, 211-218.	1.8	199
9	Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 2010, 121, 475-487.	1.8	172
10	Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza) Tj ETQq0 0	0 rgB 1. \$Over	rlocts 80 Tf 50
11	Analysis of Genotypic Diversity in the Starch Physicochemical Properties of Nonwaxy Rice: Apparent Amylose Content, Pasting Viscosity and Gel Texture. Starch/Staerke, 2006, 58, 259-267.	1.1	140
12	Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chemistry, 2015, 180, 86-97.	4.2	140
13	Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry, 2014, 143, 90-96.	4.2	130
14	Characterization of Physical Properties of Flour and Starch Obtained from Gamma-Irradiated White Rice. Starch/Staerke, 2005, 57, 480-487.	1.1	124
15	Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chemistry, 2015, 172, 630-639.	4.2	112
16	Association Mapping of Quantitative Trait Loci for Mineral Element Contents in Whole Grain Rice (<i>Oryza sativa</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 10885-10892.	2.4	109
17	Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chemistry, 2013, 139, 1133-1145.	4.2	108
18	QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100, 280-284.	1.8	106

#	Article	IF	CITATIONS
19	Analysis of Genotypic and Environmental Effects on Rice Starch. 1. Apparent Amylose Content, Pasting Viscosity, and Gel Texture. Journal of Agricultural and Food Chemistry, 2004, 52, 6010-6016.	2.4	104
20	Physical properties of Amaranthus starch. Food Chemistry, 2009, 113, 371-376.	4.2	103
21	Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theoretical and Applied Genetics, 2011, 122, 1005-1016.	1.8	98
22	Relationships among Genetic, Structural, and Functional Properties of Rice Starch. Journal of Agricultural and Food Chemistry, 2015, 63, 6241-6248.	2.4	98
23	Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. International Journal of Biological Macromolecules, 2008, 43, 377-382.	3.6	94
24	Prediction of Rice Starch Quality Parameters by Near-Infrared Reflectance Spectroscopy. Journal of Food Science, 2001, 66, 936-939.	1.5	92
25	Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theoretical and Applied Genetics, 2006, 113, 1185-1196.	1.8	91
26	Pasting Properties of γ-Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341.	2.4	89
27	Effect of Î ³ -irradiation on phenolic compounds in rice grain. Food Chemistry, 2010, 120, 74-77.	4.2	87
28	Nondestructive Prediction of Total Phenolics, Flavonoid Contents, and Antioxidant Capacity of Rice Grain Using Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2008, 56, 8268-8272.	2.4	84
29	Toward Understanding the Genetic and Molecular Bases of the Eating and Cooking Qualities of Rice. Cereal Foods World, 2012, 57, 148-156.	0.7	83
30	Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theoretical and Applied Genetics, 2002, 105, 898-905.	1.8	82
31	Title is missing!. Euphytica, 2002, 128, 317-324.	0.6	73
32	Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.): thermal properties, gel texture and swelling volume. Journal of Cereal Science, 2004, 39, 379-385.	1.8	73
33	Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). Journal of Cereal Science, 2010, 51, 159-164.	1.8	72
34	Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chemistry, 2014, 161, 239-245.	4.2	69
35	Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocolloids, 2020, 101, 105504.	5.6	67
36	Impact of Postharvest Operations on Rice Grain Quality: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 626-640.	5.9	64

#	Article	IF	CITATIONS
37	Genetic control of paste viscosity characteristics in indica rice (Oryza sativa L.). Theoretical and Applied Genetics, 1999, 98, 1120-1124.	1.8	60
38	Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Molecular Breeding, 2014, 34, 1747-1763.	1.0	60
39	Variation in mineral elements in grains of 20 brown rice accessions in two environments. Food Chemistry, 2016, 192, 873-878.	4.2	59
40	Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiation Physics and Chemistry, 2009, 78, 954-960.	1.4	56
41	Rapid Identification of Major QTLs Associated with Rice Grain Weight and Their Utilization. PLoS ONE, 2015, 10, e0122206.	1.1	56
42	Analysis of the genetic behavior of some starch properties in indica rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. Theoretical and Applied Genetics, 2002, 104, 408-413.	1.8	55
43	Factors Affecting Sensory Quality of Cooked japonica Rice. Rice Science, 2018, 25, 330-339.	1.7	54
44	Granuleâ€bound SSIIa Protein Content and its Relationship with Amylopectin Structure and Gelatinization Temperature of Rice Starch. Starch/Staerke, 2009, 61, 431-437.	1.1	53
45	Determination of Starch Lysophospholipids in Rice Using Liquid Chromatography–Mass Spectrometry (LC-MS). Journal of Agricultural and Food Chemistry, 2014, 62, 6600-6607.	2.4	53
46	Accurate Measurement of Pasting Temperature by the Rapid Visco-Analyser: a Case Study Using Rice Flour. Rice Science, 2008, 15, 69-72.	1.7	48
47	The effect of anaerobic treatment on polyphenols, antioxidant properties, tocols and free amino acids in white, red, and black germinated rice (Oryza sativa L.). Journal of Functional Foods, 2015, 19, 641-648.	1.6	48
48	Genomeâ€wide association study of the resistant starch content in rice grains. Starch/Staerke, 2017, 69, 1600343.	1.1	45
49	Genetic diversity in the physicochemical properties of waxy rice(Oryza sativa L) starch. Journal of the Science of Food and Agriculture, 2004, 84, 1299-1306.	1.7	44
50	Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends in Food Science and Technology, 2019, 83, 167-180.	7.8	43
51	Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat () Tj ETQq1 \Im	1 0.78431 1.6	4 rgBT /Ove
52	Physicochemical properties and digestibility of endosperm starches in four indica rice mutants. Carbohydrate Polymers, 2018, 195, 1-8.	5.1	42
53	Genetic diversity of potato genotypes estimated by starch physicochemical properties and microsatellite markers. Food Chemistry, 2018, 257, 368-375.	4.2	41
54	Molecular insights into how a deficiency of amylose affects carbon allocation – carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant. BMC Plant Biology, 2012, 12, 230.	1.6	39

#	Article	IF	CITATIONS
55	Association Mapping of Starch Physicochemical Properties with Starch Biosynthesizing Genes in Waxy Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2013, 61, 10110-10117.	2.4	37
56	Physicochemical and structural characteristics of starches from Chinese hullâ€less barley cultivars. International Journal of Food Science and Technology, 2016, 51, 509-518.	1.3	37
57	Fine structure and gelatinization and pasting properties relationships among starches from pigmented potatoes. Food Hydrocolloids, 2018, 83, 45-52.	5.6	37
58	Analysis of genotypic diversity in starch thermal and retrogradation properties in nonwaxy rice. Carbohydrate Polymers, 2007, 67, 174-181.	5.1	36
59	Quantitative Trait Loci for Brown Rice Color, Phenolics, Flavonoid Contents, and Antioxidant Capacity in Rice Grain. Cereal Chemistry, 2009, 86, 609-615.	1.1	36
60	Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT - Food Science and Technology, 2013, 54, 521-527.	2.5	36
61	Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 2017, 18, 2075.	1.8	36
62	Relationships among starch biosynthesizing protein content, fine structure and functionality in rice. Carbohydrate Polymers, 2020, 237, 116118.	5.1	36
63	Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches. International Journal of Biological Macromolecules, 2016, 91, 1141-1150.	3.6	35
64	Genotypic variation in phenolic acids, vitamin E and fatty acids in whole grain rice. Food Chemistry, 2016, 197, 776-782.	4.2	35
65	Determination of apparent amylose content, pasting properties and gel texture of rice starch by near-infrared spectroscopy. Journal of the Science of Food and Agriculture, 2007, 87, 2040-2048.	1.7	34
66	Determination of thermal and retrogradation properties of rice starch using near-infrared spectroscopy. Journal of Cereal Science, 2007, 46, 75-81.	1.8	33
67	Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. Journal of the Science of Food and Agriculture, 2012, 92, 1800-1807.	1.7	33
68	Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell, 2021, 33, 697-713.	3.1	33
69	Viscoelastic properties of starches and flours from two novel rice mutants induced by gamma irradiation. LWT - Food Science and Technology, 2015, 60, 578-582.	2.5	32
70	Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants, 2019, 8, 419.	2.2	32
71	Genes and QTLs for Rice Grain Quality Improvement. , 0, , .		31
72	Genome-wide association study of eating and cooking qualities in different subpopulations of rice (Oryza sativa L.). BMC Genomics, 2016, 17, 663.	1.2	30

#	Article	IF	CITATIONS
73	The texture of fresh rice noodles as affected by the physicochemical properties and starch fine structure of aged paddy. LWT - Food Science and Technology, 2020, 130, 109610.	2.5	30
74	EFFECTS OF GAMMA IRRADIATION ON ASPECTS OF MILLED RICE (ORYZA SATIVA) END-USE QUALITY. Journal of Food Quality, 2001, 24, 327-336.	1.4	29
75	Rapid Prediction of Acid Detergent Fiber, Neutral Detergent Fiber, and Acid Detergent Lignin of Rice Materials by Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53, 2843-2848.	2.4	29
76	Effects of Î ³ -irradiation on phenolics content, antioxidant activity and physicochemical properties of whole grainrice. Radiation Physics and Chemistry, 2013, 85, 227-233.	1.4	29
77	Genotype × Environment Interactions for Agronomic Traits of Rice Revealed by Association Mapping. Rice Science, 2014, 21, 133-141.	1.7	27
78	Underlying Mechanisms of Zymographic Diversity in Starch Synthase I and Pullulanase in Rice-Developing Endosperm. Journal of Agricultural and Food Chemistry, 2016, 64, 2030-2037.	2.4	27
79	The decontamination effects of gamma irradiation on the edible gelatin. Radiation Physics and Chemistry, 2000, 57, 345-348.	1.4	26
80	Quantitative Trait Loci for Panicle Layer Uniformity Identified in Doubled Haploid Lines of Rice in Two Environments. Journal of Integrative Plant Biology, 2009, 51, 818-824.	4.1	26
81	Analysis of Genotype × Environment Interactions for Polyphenols and Antioxidant Capacity of Rice by Association Mapping. Journal of Agricultural and Food Chemistry, 2014, 62, 5361-5368.	2.4	26
82	Analysis of Genetic Diversity and Relationships in Waxy Rice (Oryza sativa L.) using AFLP and ISSR Markers. Genetic Resources and Crop Evolution, 2006, 53, 323-330.	0.8	25
83	Starch Physicochemical Properties and Their Associations with Microsatellite Alleles of Starch-Synthesizing Genes in a Rice RIL Population. Journal of Agricultural and Food Chemistry, 2008, 56, 1589-1594.	2.4	25
84	Analysis of Genotype, Environment, and Their Interaction Effects on the Phytochemicals and Antioxidant Capacities of Red Rice (<i>Oryza sativa</i> L.). Cereal Chemistry, 2015, 92, 204-210.	1.1	25
85	QTL mapping for rice grain quality: a strategy to detect more QTLs within sub-populations. Molecular Breeding, 2015, 35, 1.	1.0	25
86	Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene. Scientific Reports, 2017, 7, 3339.	1.6	25
87	Analysis of Genotypic and Environmental Effects on Rice Starch. 2. Thermal and Retrogradation Properties. Journal of Agricultural and Food Chemistry, 2004, 52, 6017-6022.	2.4	24
88	The effects of internal endosperm lipids on starch properties: Evidence from rice mutant starches. Journal of Cereal Science, 2019, 89, 102804.	1.8	24
89	Molecular and biochemical analysis of the gelatinization temperature characteristics of rice (Oryza) Tj ETQq1 1	0.784314 1.8	rgBT /Overloc
90	Fine structure and relationships with functional properties of pigmented sweet potato starches. Food Chemistry, 2020, 311, 126011.	4.2	23

6

Jinsong Bao

#	Article	IF	CITATIONS
91	Starch RVA profile parameters of rice are mainly controlled byWx gene. Science Bulletin, 1999, 44, 2047-2051.	1.7	22
92	Responses of Rice Genotypes Carrying Different Dwarf Genes toFusarium moniliformeand Gibberellic Acid. Plant Production Science, 2008, 11, 134-138.	0.9	22
93	Morphological and physicochemical properties of two starch mutants induced from a high amylose indica rice by gamma irradiation. Starch/Staerke, 2014, 66, 157-165.	1.1	22
94	Physicochemical properties and starch digestibility of inâ€kernel heatâ€moistureâ€treated waxy, lowâ€, and highâ€amylose rice starch. Starch/Staerke, 2017, 69, 1600164.	1.1	22
95	Links between microbial compositions and volatile profiles of rice noodle fermentation liquid evaluated by 16S rRNA sequencing and GC-MS. LWT - Food Science and Technology, 2020, 118, 108774.	2.5	22
96	Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (<i><scp>M</scp>anihot esculenta </i> <scp>C</scp> rantz). Plant Biology, 2014, 16, 197-207.	1.8	21
97	Genome-wide Association Mapping of Polyphenol Contents and Antioxidant Capacity in Whole-Grain Rice. Journal of Agricultural and Food Chemistry, 2016, 64, 4695-4703.	2.4	21
98	Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants, 2022, 11, 603.	2.2	21
99	Development of new markers to genotype the functional SNPs of SSIIa, a gene responsible for gelatinization temperature of rice starch. Journal of Cereal Science, 2010, 52, 438-443.	1.8	20
100	The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch. Carbohydrate Polymers, 2015, 133, 187-193.	5.1	20
101	Fine molecular structure and its effects on physicochemical properties of starches in potatoes grown in two locations. Food Hydrocolloids, 2019, 97, 105172.	5.6	20
102	Effects of cassava variety and growth location on starch fine structure and physicochemical properties. Food Hydrocolloids, 2020, 108, 106074.	5.6	20
103	Association Analysis of Markers Derived from Starch Biosynthesis Related Genes with Starch Physicochemical Properties in the USDA Rice Mini-Core Collection. Frontiers in Plant Science, 2017, 8, 424.	1.7	19
104	Relationships Between Cooking Properties and Physicochemical Properties in Brown and White Rice. Starch/Staerke, 2018, 70, 1700167.	1.1	19
105	The role of different Wx and BEIIb allele combinations on fine structures and functional properties of indica rice starches. Carbohydrate Polymers, 2022, 278, 118972.	5.1	19
106	Expression Profiles and Protein Complexes of Starch Biosynthetic Enzymes from White-Core and Waxy Mutants Induced from High Amylose Indica Rice. Rice Science, 2020, 27, 152-161.	1.7	18
107	Gelatinization, pasting and retrogradation properties and molecular fine structure of starches from seven cassava cultivars. International Journal of Biological Macromolecules, 2020, 150, 831-838.	3.6	18
108	Mapping QTLs for heading synchrony in a doubled haploid population of rice in two environments. Journal of Genetics and Genomics, 2009, 36, 297-304.	1.7	17

#	Article	IF	CITATIONS
109	Genotypic Variation in Lysophospholipids of Milled Rice. Journal of Agricultural and Food Chemistry, 2014, 62, 9353-9361.	2.4	17
110	Physicochemical and crystalline properties of heat–moistureâ€treated rice starch: combined effects of moisture and duration of heating. Journal of the Science of Food and Agriculture, 2015, 95, 2874-2879.	1.7	17
111	Improving Starchâ€Related Traits in Potato Crops: Achievements and Future Challenges. Starch/Staerke, 2018, 70, 1700113.	1.1	17
112	Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. International Journal of Molecular Sciences, 2021, 22, 5901.	1.8	17
113	Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice (<i>Oryza) Tj ETQq1 1 0.78 2018, 66, 3030-3037.</i>	4314 rgB 2.4	T /Overlock 1 16
114	Rice Flour and Starch Functionality. , 2018, , 373-419.		16
115	Three Major Nucleotide Polymorphisms in the <i>Waxy</i> Gene Correlated with the Amounts of Extra-long Chains of Amylopectin in Rice Cultivars with S or L-type Amylopectin. Journal of Applied Glycoscience (1999), 2019, 66, 37-46.	0.3	16
116	Rice lipids and rice bran oil. , 2019, , 131-168.		16
117	Comparative Phosphoproteomic Analysis Reveals the Response of Starch Metabolism to High-Temperature Stress in Rice Endosperm. International Journal of Molecular Sciences, 2021, 22, 10546.	1.8	16
118	OPTIMIZATION OF EXTRACTION OF PHENOLIC ANTIOXIDANTS FROM TEA (CAMELLIA SINENSIS L.) FRUIT PEEL BIOMASS USING RESPONSE SURFACE METHODOLOGY. BioResources, 2012, 7, .	0.5	15
119	Nucleotide polymorphisms in OsAGP genes and their possible association with grain weight of rice. Journal of Cereal Science, 2012, 55, 312-317.	1.8	15
120	Resistant starch content and physicochemical properties of non-waxy rice starches modified by pullulanase, heat-moisture treatment, and citric acid. Journal of Cereal Science, 2022, 105, 103472.	1.8	15
121	Genotypic diversity and environmental stability of starch physicochemical properties in the USDA rice mini-core collection. Food Chemistry, 2017, 221, 1186-1196.	4.2	14
122	QTLs for rice flag leaf traits in doubled haploid populations in different environments. Genetics and Molecular Research, 2015, 14, 6786-6795.	0.3	14
123	Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa) Tj ETQq1 1 ().784314 1.7	rgBT /Overlo
124	Analysis of Lysophospholipid Content in Low Phytate Rice Mutants. Journal of Agricultural and Food Chemistry, 2017, 65, 5435-5441.	2.4	12
125	Rice milling quality. , 2019, , 339-369.		12
126	Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice. Journal of Cereal Science, 2020, 96, 103091.	1.8	12

Jinsong Bao

#	Article	IF	CITATIONS
127	Pasting, gelatinization, and retrogradation characteristics related to structural properties of tea seed starches. Food Hydrocolloids, 2021, 117, 106701.	5.6	12
128	Mutations of OsPLDa1 Increase Lysophospholipid Content and Enhance Cooking and Eating Quality in Rice. Plants, 2020, 9, 390.	1.6	11
129	Variation in physicochemical properties and nutritional quality in chalky mutants derived from an indica rice. Journal of Cereal Science, 2020, 91, 102899.	1.8	10
130	Characterization of gluten proteins in different parts of wheat grain and their effects on the textural quality of steamed bread. Journal of Cereal Science, 2021, 102, 103368.	1.8	10
131	Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice. Plant Molecular Biology, 2022, 108, 399-412.	2.0	10
132	Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa × Oryza rufipogon. Journal of Zhejiang University: Science B, 2011, 12, 518-526.	1.3	9
133	Variation in Polyphenols, Tocols, γâ€Aminobutyric Acid, and Antioxidant Properties in Whole Grain Rice (<i>Oryza sativa</i> L.) as Affected by Different Germination Time. Cereal Chemistry, 2016, 93, 268-274.	1.1	9
134	Rice starch. , 2019, , 55-108.		9
135	Analysis of the relationship between Wx alleles and some starch quality parameters of rice (Oryza) Tj ETQq1 1	0.784314 r	gBT ₈ /Overloc
136	Identification of Simple Sequence Repeat (SSR) Markers for Acid Detergent Fiber in Rice Straw by Bulked Segregant Analysis. Journal of Agricultural and Food Chemistry, 2006, 54, 7616-7620.	2.4	7
137	Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice. Rice Science, 2016, 23, 287-296.	1.7	7
138	The role of indica starch in the mechanism of formation of fresh rice noodles. Journal of Cereal Science, 2021, 99, 103212.	1.8	7
139	Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice. Cereal Research Communications, 2007, 35, 23-30.	0.8	7
140	Identification of QTLs for agronomic traits in indica rice using an RIL population. Genes and Genomics, 2015, 37, 809-817.	0.5	6
141	Genetic diversity and stability in starch physicochemical property traits of potato breeding lines. Food Chemistry, 2019, 290, 201-207.	4.2	6
142	Functional Interactions between Enzymes Involved in Amylose and Amylopectin Biosynthesis in Rice Based on Mathematical Models. Biomacromolecules, 2022, 23, 1443-1452.	2.6	6
143	Starch in health and disease. Starch/Staerke, 2017, 69, 1770076.	1.1	5
144	Biotechnology for rice grain quality improvement. , 2019, , 443-471.		5

#	Article	IF	CITATIONS
145	Starch fine structure and functional properties during seed development in BEIIb active and deficient rice. Carbohydrate Polymers, 2022, 292, 119640.	5.1	5
146	Identification of QTLs for rice flower opening time in two environments. Euphytica, 2017, 213, 1.	0.6	4
147	Transcriptomic Analysis of Root Restriction Effects on the Primary Metabolites during Grape Berry Development and Ripening. Genes, 2022, 13, 281.	1.0	4
148	The origin of the A/G single nucleotide polymorphism of <i>starch synthase IIa</i> in rice and its relation to gelatinization temperature. Cereal Chemistry, 2022, 99, 275-285.	1.1	3
149	Recent Advances in Modification Approaches, Health Benefits, and Food Applications of Resistant Starch. Starch/Staerke, 2023, 75, 2100141.	1.1	3
150	Rice phenolics and other natural products. , 2019, , 221-271.		2
151	Editorial: Compositional Diversity in Cereals in Relation to Their Nutritional Quality and Health Benefits. Frontiers in Nutrition, 2021, 8, 819923.	1.6	2
152	Fractionation and Extraction of Crude Nuclear Proteins From Arabidopsis Seedlings. Bio-protocol, 2022, 12, e4296.	0.2	2
153	Molecular regulation of starch metabolism. Plant Molecular Biology, 2022, 108, 289-290.	2.0	2
154	Analysis of quantitative trait loci for panicle layer uniformity in rice (O <i>ryza sativa</i> L.). Cereal Research Communications, 2009, 37, 383-390.	0.8	1
155	Cloning and analysis of the molecularly characterized chitinase genes of Daphnia carinata and Simocephalus vetulus. Genes and Genomics, 2017, 39, 1395-1406.	0.5	1
156	Diurnal changes in starch molecular structures and expression profiles of starch biosynthesis enzymes in rice developing seeds. International Journal of Biological Macromolecules, 2022, 209, 2165-2174.	3.6	1
157	Physicochemical, Nutritional, and Antioxidant Properties in Seven Sweet Potato Flours. Frontiers in Nutrition, 0, 9, .	1.6	1
158	The identification of foods treated with γ irradiation by the use of a luminescence technique: a case study of milk powder. International Journal of Food Science and Technology, 2005, 40, 783-788.	1.3	0
159	Agronomic and environmental factors affecting rice grain quality. Burleigh Dodds Series in Agricultural Science, 2017, , 253-270.	0.1	0