Tanveer Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991878/publications.pdf

Version: 2024-02-01

687363 610901 65 658 13 24 citations h-index g-index papers 71 71 71 533 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A machine learning-based classification model to identify the effectiveness of vibration for \hat{l} /4EDM. AEJ - Alexandria Engineering Journal, 2022, 61, 6979-6989.	6.4	7
2	Application of CANFIS for modelling and predicting multiple output performances for different materials in µEDM. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 528-546.	4.5	4
3	Non-traditional machining techniques for silicon wafers. International Journal of Advanced Manufacturing Technology, 2022, 121, 29-57.	3.0	5
4	Effect of austempering temperature and manganese content on the impact energy of austempered ductile iron. Cogent Engineering, 2021, 8, 1939928.	2.2	3
5	Electrochemical machining for microfabrication. , 2021, , 339-386.		0
6	Heat-assisted \hat{l} 4-electrical discharge machining of silicon. International Journal of Advanced Manufacturing Technology, 2021, 113, 1727-1738.	3.0	4
7	Effect of laser parameters on sequential laser beam micromachining and micro electro-discharge machining. International Journal of Advanced Manufacturing Technology, 2021, 114, 709-723.	3.0	10
8	Dual-stage artificial neural network (ANN) model for sequential LBMM- $\hat{1}\frac{1}{4}$ EDM-based micro-drilling. International Journal of Advanced Manufacturing Technology, 2021, 117, 3343-3365.	3.0	4
9	ELID Grinding for Final Finishing Operation. Materials Forming, Machining and Tribology, 2020, , 129-145.	1.1	0
10	Copper–Cobalt Thermoelectric Generators: Power Improvement Through Optimized Thickness and Sandwiched Planar Structure. IEEE Transactions on Electron Devices, 2019, 66, 3459-3465.	3.0	9
11	Prototype of single degree of freedom optical resolver. IOP Conference Series: Materials Science and Engineering, 2019, 488, 012004.	0.6	0
12	PDMS-based dual-channel pneumatic micro-actuator. Smart Materials and Structures, 2019, 28, 115044.	3.5	16
13	Modular robotic platform for autonomous machining. International Journal of Advanced Manufacturing Technology, 2019, 105, 2557-2567.	3.0	3
14	Artificial neural network modelling and analysis of carbon nanopowder mixed micro wire electro discharge machining of gold coated doped silicon. International Journal of Materials Engineering Innovation, 2019, 10, 346.	0.5	2
15	Development of an Active Fixture for Ultrasonically Assisted Micro Electro-Discharge Machining. , 2019, , .		0
16	Development and Performance Evaluation of Modular RC-based Power Supply for Micro-EDM., 2019, , .		1
17	Near Net Shape Machining by Micro-EDM and Micro-WEDM. Materials Forming, Machining and Tribology, 2019, , 231-264.	1.1	1
18	An <i>ex-situ</i> method to convert vertically aligned carbon nanotubes array to horizontally aligned carbon nanotubes mat. Materials Research Express, 2019, 6, 025019.	1.6	6

#	Article	IF	CITATIONS
19	A Review on Micro-Patterning Processes of Vertically Aligned Carbon Nanotubes Array (VACNTs) Tj ETQq1 1 0	.784314 rgBT 1.2	/Qverlock 1
20	Artificial neural network modelling and analysis of carbon nanopowder mixed micro wire electro discharge machining of gold coated doped silicon. International Journal of Materials Engineering Innovation, 2019, 10, 346.	0.5	0
21	Editorial: Advanced Nanomaterial Synthesis and their Applications for Engineering Research. Current Nanomaterials, 2018, 2, 75-75.	0.4	1
22	Optical characterization of tip bended Vertically Aligned Carbon Nanotubes array. Chemical Physics Letters, 2018, 711, 37-41.	2.6	4
23	Towards achieving nanofinish on silicon (Si) wafer by $\hat{l}\frac{1}{4}$ -wire electro-discharge machining. International Journal of Advanced Manufacturing Technology, 2018, 99, 3005-3015.	3.0	5
24	COMBINING FUSED DEPOSITION MODELLING WITH ABRASIVE MILLING TO ATTAIN HIGHER DIMENSIONAL ACCURACY AND BETTER SURFACE FINISH ON THE FINISHED PRODUCT. IIUM Engineering Journal, 2018, 19, 221-231.	0.8	6
25	Optical anisotropy in micromechanically rolled carbon nanotube forest. Electronic Materials Letters, 2017, 13, 442-448.	2.2	2
26	Design and Development of a Hybrid Machine Combining Rapid Prototyping and CNC Milling Operation. Procedia Engineering, 2017, 184, 163-170.	1.2	29
27	An Experimental Investigation on the Effect of Nanopowder for Micro-Wire Electro Discharge Machining of Gold Coated Silicon. Procedia Engineering, 2017, 184, 171-177.	1.2	7
28	Empirical modeling of micromechanical bending process of vertically aligned carbon nanotube forest using response surface methodology. Cogent Engineering, 2017, 4, 1347078.	2.2	0
29	An Assistive Robotic Hand Based on Human Computer Interface (HCI) and Shape Memory Alloy (SMA) Actuator. Lecture Notes in Electrical Engineering, 2017, , 385-394.	0.4	O
30	Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth. Microsystem Technologies, 2017, 23, 2663-2674.	2.0	10
31	Development of localised electrochemical deposition control system for fabricating micro EDM electrode. International Journal of Machining and Machinability of Materials, 2017, 19, 260.	0.1	1
32	1.13 ELID Grinding and EDM for Finish Machining. , 2017, , 364-407.		3
33	Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach. IOP Conference Series: Materials Science and Engineering, 2017, 260, 012031.	0.6	11
34	Development of localised electrochemical deposition control system for fabricating micro EDM electrode. International Journal of Machining and Machinability of Materials, 2017, 19, 260.	0.1	0
35	Concept of a Programmable Fixture for 3-Axis CNC. International Journal of Engineering Materials and Manufacture, 2017, 2, 49-57.	0.3	O
36	Micro glow plasma for localized nanostructural modification of carbon nanotube forest. Applied Physics Letters, 2016, 109, 081604.	3.3	1

#	Article	IF	Citations
37	Investigation of anisotropic reflectance from densified arrays of vertically aligned carbon nanotube forests (VACNTs). Chemical Physics Letters, 2016, 658, 343-346.	2.6	2
38	Study on micro-patterning process of vertically aligned carbon nanotubes (VACNTs). Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 88-99.	2.1	12
39	A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel–Titanium-Based Shape Memory Alloy. Materials and Manufacturing Processes, 2016, 31, 447-455.	4.7	89
40	Enhancement of reflectance of densified vertically aligned carbon nanotube forests. Carbon Letters, 2016, 18, 67-70.	5.9	5
41	A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation. Advanced Materials Research, 2015, 1115, 549-554.	0.3	3
42	Development and performance evaluation of a linear actuator based wearable assistive device., 2015,,.		2
43	Optimal particle ratio to maximize the dynamic range of magnetorheological fluid (MRF) damper for prosthetic limb. , $2015, \dots$		1
44	Experimental study on improving $\hat{l}^{1/4}$ -WEDM and $\hat{l}^{1/4}$ -EDM of doped silicon by temporary metallic coating. International Journal of Advanced Manufacturing Technology, 2015, 78, 1651-1663.	3.0	29
45	Development of a Shape Memory Alloy (SMA) Based Assistive Hand. Advanced Materials Research, 2015, 1115, 454-457.	0.3	3
46	Electrolytic In-Process Dressing (ELID) Grinding for Nano-Surface Generation., 2014,, 483-522.		1
47	Micropatterning Polypyrrole Conducting Polymer by Pulsed Electrical Discharge. Macromolecular Materials and Engineering, 2014, 299, 198-207.	3.6	5
48	Micro-mechanical bending (M ² B) method for carbon nanotube (CNT) based sensor fabrication. , 2014, , .		1
49	Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon, 2013, 52, 288-295.	10.3	17
50	Highâ€power MEMS switch enabled by carbonâ€nanotube contact and shapeâ€memoryâ€alloy actuator. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 631-638.	1.8	20
51	ν-Patterning of Carbon Nanotube (CNT) forest for MEMS applications. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012050.	0.6	2
52	Transforming carbon nanotube forest from darkest absorber to reflective mirror. Applied Physics Letters, 2012, 101, 061913.	3.3	37
53	High-precision dry micro-electro-discharge machining of carbon-nanotube forests with ultralow discharge energy., 2012,,.		2
54	Field-emission-assisted approach to dry micro-electro-discharge machining of carbon-nanotube forests. Journal of Applied Physics, 2011, 110, .	2.5	24

#	Article	IF	CITATIONS
55	In-Process Truing for ELID (Electrolytic In-Process Dressing) Grinding by Pulsewidth Control. IEEE Transactions on Automation Science and Engineering, 2011, 8, 338-346.	5.2	9
56	A System Development Approach for Electrolytic In-Process Dressing (ELID) Grinding. International Journal of Automation Technology, 2011, 5, 21-29.	1.0	2
57	Efficient dressing of the wheel in ELID grinding by controllable voltage with force feed back. International Journal of Advanced Manufacturing Technology, 2010, 46, 123-130.	3.0	21
58	A multiprocess machine tool for compound micromachining. International Journal of Machine Tools and Manufacture, 2010, 50, 344-356.	13.4	74
59	Modelling for fabrication of microelectrodes by localized electrochemical deposition for micro-electrodischarge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224, 1741-1755.	2.4	6
60	Development, Modeling, and Experimental Investigation of Low Frequency Workpiece Vibration-Assisted Micro-EDM of Tungsten Carbide. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132, .	2.2	33
61	Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation. International Journal of Machine Tools and Manufacture, 2008, 48, 887-895.	13.4	59
62	Development and performance evaluation of an ultra precision ELID grinding machine. Journal of Materials Processing Technology, 2007, 192-193, 287-291.	6.3	28
63	Study of Micro-EDM of Tungsten Carbide with Workpiece Vibration. Advanced Materials Research, 0, 264-265, 1056-1061.	0.3	10
64	Remote Interior Temperature Control of Parked Vehicles. Advanced Materials Research, 0, 1115, 494-498.	0.3	0
65	Hexapod robot for autonomous machining. IOP Conference Series: Materials Science and Engineering, 0, 488, 012003.	0.6	3