## Perrine Chaurand

## List of Publications by Citations

Source: https://exaly.com/author-pdf/6991699/perrine-chaurand-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58
papers

2,921
citations

30
h-index

9-index

60
ext. papers

2,921
g-index

7.6
avg, IF

L-index

| #  | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 58 | Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. <i>Planta</i> , <b>2015</b> , 241, 847-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.7  | 219       |
| 57 | Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. <i>Environmental Science &amp; Environmental Sc</i>     | 10.3 | 179       |
| 56 | Structural degradation at the surface of a TiO(2)-based nanomaterial used in cosmetics. <i>Environmental Science &amp; Environmental Science &amp; amp; Technology</i> , <b>2010</b> , 44, 2689-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3 | 167       |
| 55 | Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. <i>Langmuir</i> , <b>2008</b> , 24, 3215-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4    | 167       |
| 54 | CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. <i>Nanotoxicology</i> , <b>2009</b> , 3, 161-171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3  | 155       |
| 53 | Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. <i>Journal of Hazardous Materials</i> , <b>2007</b> , 139, 537-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.8 | 155       |
| 52 | Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste. <i>Cement and Concrete Research</i> , <b>2015</b> , 67, 138-147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3 | 153       |
| 51 | New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag. <i>Journal of Physical Chemistry B</i> , <b>2007</b> , 111, 5101-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4  | 122       |
| 50 | Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. <i>Environmental Pollution</i> , <b>2011</b> , 159, 2515-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3  | 107       |
| 49 | Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 2011, 31, 225-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.6  | 107       |
| 48 | Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis thaliana by X-ray Computed Nanotomography and Hyperspectral Imaging. <i>Environmental Science &amp; Emp; Technology</i> , <b>2017</b> , 51, 8682-8691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3 | 92        |
| 47 | Silver Nanoparticles and Wheat Roots: A Complex Interplay. <i>Environmental Science &amp; Environmental Scie</i> | 10.3 | 75        |
| 46 | Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. <i>Environment International</i> , <b>2011</b> , 37, 1105-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.9 | 75        |
| 45 | Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. <i>Environmental Pollution</i> , <b>2014</b> , 187, 22-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.3  | 65        |
| 44 | Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. <i>Journal of the American Chemical Society</i> , <b>2012</b> , 134, 3780-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.4 | 65        |
| 43 | Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. <i>Environmental Science &amp; Environmental Sci</i>     | 10.3 | 58        |
| 42 | Effect of phytoliths for mitigating water stress in durum wheat. <i>New Phytologist</i> , <b>2017</b> , 215, 229-239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.8  | 56        |

## (2014-2006)

| 41 | Speciation of Cr and V within BOF steel slag reused in road constructions. <i>Journal of Geochemical Exploration</i> , <b>2006</b> , 88, 10-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8  | 53 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 40 | Long-term aging of a CeO(2) based nanocomposite used for wood protection. <i>Environmental Pollution</i> , <b>2014</b> , 188, 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3  | 51 |
| 39 | Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. <i>Chemical Engineering Journal</i> , <b>2015</b> , 260, 83-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.7 | 50 |
| 38 | Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. <i>Environmental Pollution</i> , <b>2012</b> , 163, 55-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3  | 46 |
| 37 | Mineralogy and leachability of gasified sewage sludge solid residues. <i>Journal of Hazardous Materials</i> , <b>2011</b> , 191, 219-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8 | 45 |
| 36 | Investigation of copper speciation in pig slurry by a multitechnique approach. <i>Environmental Science &amp; Environmental Science</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.3 | 44 |
| 35 | High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. <i>Review of Scientific Instruments</i> , <b>2012</b> , 83, 063104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7  | 44 |
| 34 | Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. <i>Environmental Pollution</i> , <b>2016</b> , 212, 299-306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.3  | 40 |
| 33 | Adsorption of arsenic on polyaluminum granulate. <i>Environmental Science &amp; Environmental Science &amp; Envi</i> | 10.3 | 38 |
| 32 | Environmental exposure to TiO nanomaterials incorporated in building material. <i>Environmental Pollution</i> , <b>2017</b> , 220, 1160-1170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.3  | 36 |
| 31 | Structural incorporation of iron into Gellmogolite nanotubes: a promising step for innovative nanomaterials. <i>RSC Advances</i> , <b>2014</b> , 4, 49827-49830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7  | 33 |
| 30 | Exposure of juvenile Danio rerio to aged TiO[hanomaterial from sunscreen. <i>Environmental Science and Pollution Research</i> , <b>2013</b> , 20, 3340-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1  | 33 |
| 29 | Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. <i>Water Research</i> , <b>2013</b> , 47, 3921-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.5 | 32 |
| 28 | Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. <i>Geochimica Et Cosmochimica Acta</i> , <b>2019</b> , 260, 15-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5  | 29 |
| 27 | Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes. <i>Physical Chemistry Chemical Physics</i> , <b>2011</b> , 13, 14516-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6  | 28 |
| 26 | Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes. <i>Environmental Science &amp; Environmental Science &amp; Environmental</i>         | 10.3 | 27 |
| 25 | Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. <i>Environmental Science &amp; Environmental Science &amp; Environm</i>                 | 10.3 | 25 |
| 24 | Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. <i>Nanotoxicology</i> , <b>2014</b> , 8 Suppl 1, 167-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.3  | 24 |

| 23 | Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. <i>Particle and Fibre Toxicology</i> , <b>2014</b> , 11, 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                       | 21 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----|
| 22 | Influence of the length of imogolite-like nanotubes on their cytotoxicity and genotoxicity toward human dermal cells. <i>Chemical Research in Toxicology</i> , <b>2012</b> , 25, 2513-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                         | 21 |
| 21 | Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. <i>Environmental Science and Pollution Research</i> , <b>2016</b> , 23, 5960-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1                       | 20 |
| 20 | Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. <i>Environmental Science &amp; Environmental Science &amp; Environme</i> | 10.3                      | 19 |
| 19 | Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. <i>Comptes Rendus - Geoscience</i> , <b>2015</b> , 347, 35-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                       | 18 |
| 18 | Location and evolution of the speciation of vanadium in bitumen and model of reclaimed bituminous mixes during ageing: Can vanadium serve as a tracer of the aged and fresh parts of the reclaimed asphalt pavement mixture?. <i>Fuel</i> , <b>2012</b> , 102, 423-430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1                       | 18 |
| 17 | Environmental exposure of a simulated pond ecosystem to a CuO nanoparticle-based wood stain throughout its life cycle. <i>Environmental Science: Nano</i> , <b>2018</b> , 5, 2579-2589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1                       | 14 |
| 16 | Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. <i>Plants</i> , <b>2020</b> , 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5                       | 13 |
| 15 | Non-linear release dynamics for a CeO nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. <i>Environmental Pollution</i> , <b>2018</b> , 241, 182-193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.3                       | 12 |
| 14 | Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO) particles in a mouse bioassay. <i>Archives of Toxicology</i> , <b>2018</b> , 92, 1673-1684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8                       | 11 |
| 13 | Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. <i>Scientific Reports</i> , <b>2018</b> , 8, 4408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9                       | 11 |
| 12 | Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. <i>Geochimica Et Cosmochimica Acta</i> , <b>2018</b> , 229, 53-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.5                       | 10 |
| 11 | Accumulation, speciation and localization of silver nanoparticles in the earthworm Eisenia fetida. <i>Environmental Science and Pollution Research</i> , <b>2021</b> , 28, 3756-3765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1                       | 10 |
| 10 | How to assess trace elements bioavailability for benthic organisms in lowly to moderately contaminated coastal sediments?. <i>Marine Pollution Bulletin</i> , <b>2019</b> , 140, 86-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.7                       | 7  |
| 9  | Medium-term effects of Ag supplied directly or via sewage sludge to an agricultural soil on Eisenia fetida earthworm and soil microbial communities. <i>Chemosphere</i> , <b>2021</b> , 269, 128761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.4                       | 6  |
| 8  | Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. <i>Environmental Science: Nano</i> , <b>2019</b> , 6, 624-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 <b>3</b> 4 <sup>1</sup> | 3  |
| 7  | Study of a set of micrometeorites from Antarctica using magnetic and ESR methods coupled with micro-XRF. <i>Journal of Magnetism and Magnetic Materials</i> , <b>2008</b> , 320, 1687-1695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                       | 3  |
| 6  | SiII/G based anode swelling and porosity evolution in 18650 casing and in pouch cell. <i>Journal of Power Sources</i> , <b>2021</b> , 514, 230552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.9                       | 3  |

## LIST OF PUBLICATIONS

| 5 | The necessity of investigating a freshwater-marine continuum using a mesocosm approach in nanosafety: The case study of TiO2 MNM-based photocatalytic cement. <i>NanoImpact</i> , <b>2020</b> , 20, 100254                                      | 5.6               | 3 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
| 4 | Thermal cracking of CH3Cl leads to auto-catalysis of deposited coke. <i>Catalysis Science and Technology</i> , <b>2021</b> , 11, 469-473                                                                                                        | 5.5               | 2 |
| 3 | Oxidative transformation of Tungsten (W) nanoparticles potentially released in aqueous and biological media in case of Tokamak (nuclear fusion) Lost of Vacuum Accident (LOVA). <i>Comptes Rendus - Geoscience</i> , <b>2020</b> , 352, 539-558 | 1.4               | 1 |
| 2 | X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. <i>Environmental Pollution</i> , <b>2021</b> , 279, 116                                     | 58 <del>9</del> 7 | О |
| 1 | Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. <i>Chemosphere</i> , <b>2022</b> , 287, 132315                                                                                                | 8.4               | 0 |