Rachmat Adhi Wibowo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Temperature-Processed Transparent Electrodes Based on Compact and Mesoporous Titanium Oxide Layers for Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5318-5330.	5.1	5
2	Flexible Transparent Heater Fabricated from Spray-Coated In:ZnO/Ag-NWs/In:ZnO Multilayers on Polyimide Foil. Nanomaterials, 2022, 12, 316.	4.1	3
3	Transparent electrodes based on molybdenum–titanium–oxide with increased water stability for use as hole-transport/hole-injection components. Journal of Materials Science, 2022, 57, 8752-8766.	3.7	2
4	Fast sputter deposition of MoOx/metal/MoOx transparent electrodes on glass and PET substrates. Journal of Materials Science, 2021, 56, 9047-9064.	3.7	10
5	Design and implementation of an ultrathin dielectric/metal/dielectric transparent electrode for Cu2ZnSnS4 thin-film photovoltaics. Solar Energy Materials and Solar Cells, 2021, 230, 111247.	6.2	3
6	Material investigation on magnetron sputtered \$ext{TiO}_{2-x}\$ alternative buffer layers for CIGSe absorber produced in an industrial roll-to-roll hybrid sputter co-evaporation process. , 2020, , .		0
7	Dynamic interplay of alkali cations and a natural organic binder in the microstructural evolution of Cu2ZnSnS4 thin films prepared from Cu2ZnSnS4 powder-containing inks. RSC Advances, 2019, 9, 28670-28677.	3.6	2
8	Nanocrystalline Ga ₂ O ₃ films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates. Journal of Materials Chemistry C, 2019, 7, 69-77.	5.5	43
9	Rapid Processing of In-Doped ZnO by Spray Pyrolysis from Environment-Friendly Precursor Solutions. Coatings, 2019, 9, 245.	2.6	7
10	Allâ€solutionâ€processed transparent front contact for monograin layer kesterite solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 547-555.	8.1	5
11	Influence of the aqueous solution composition on the morphology of Zn _{1â°x} Mg _x O films deposited by spray pyrolysis. Journal of Materials Chemistry C, 2019, 7, 3889-3900.	5.5	16
12	Polymer interlayers on flexible PET substrates enabling ultra-high performance, ITO-free dielectric/metal/dielectric transparent electrode. Materials and Design, 2019, 168, 107663.	7.0	33
13	Powder-to-film approach for fabricating critical raw material-free kesterite Cu2ZnSn(S,Se)4 thin film photovoltaic: A review. Solar Energy, 2018, 176, 157-169.	6.1	10
14	Solution-processed all-oxide solar cell based on electrodeposited Cu2O and ZnMgO by spray pyrolysis. Journal of Materials Science, 2018, 53, 12231-12243.	3.7	28
15	Comparison of chemical bath-deposited ZnO films doped with Al, Ga and In. Journal of Materials Science, 2017, 52, 9410-9423.	3.7	35
16	Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions. Journal of Materials Science, 2017, 52, 8591-8602.	3.7	57
17	All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Solar Energy Materials and Solar Cells, 2017, 161, 449-459.	6.2	43
18	Optimization of growth parameters for growth of high quality heteroepitaxial 3C–SiC films at 1200°C. Thin Solid Films, 2015, 577, 88-93.	1.8	12

#	Article	IF	CITATIONS
19	Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 84-92.	3.5	27
20	Influence of the acetic acid concentration on the growth of zinc oxide thin films prepared by spray pyrolysis of aqueous solutions. Thin Solid Films, 2015, 594, 238-244.	1.8	16
21	Galvanostatically-electrodeposited Cu–Zn–Sn multilayers as precursors for crystallising kesterite Cu2ZnSnS4 thin films. Thin Solid Films, 2015, 582, 239-244.	1.8	10
22	The formation mechanism of secondary phases in Cu 2 ZnSnSe 4 absorber layer. Thin Solid Films, 2015, 582, 245-248.	1.8	8
23	Formation of Cu2SnSe3 from stacked elemental layers investigated by combined in situ X-ray diffraction and differential scanning calorimetry techniques. Journal of Alloys and Compounds, 2014, 588, 254-258.	5.5	17
24	Real-time investigations on the formation of Cu(In,Ga)(S,Se)2 while annealing Cu–In–Ga precursors with different sulphur–selenium mixtures. Thin Solid Films, 2013, 535, 112-117.	1.8	8
25	Intermetallic compounds dynamic formation during annealing ofÂstacked elemental layers and its influences on the crystallization ofÂCu2ZnSnSe4 films. Materials Chemistry and Physics, 2013, 142, 311-317.	4.0	28
26	Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors. Thin Solid Films, 2013, 535, 5-9.	1.8	49
27	A study of kesterite Cu2ZnSn(Se,S)4 formation from sputtered Cu–Zn–Sn metal precursors by rapid thermal processing sulfo-selenization of the metal thin films. Thin Solid Films, 2013, 535, 57-61.	1.8	28
28	Optimising The Parameters For The Synthesis Of Cuin-Nanoparticles By Chemical Reduction Method For Chalcopyrite Thin Film Precursors. Materials Research Society Symposia Proceedings, 2013, 1538, 203-208.	0.1	2
29	EFFECTS OF DEPOSITION PARAMETERS AND OXYGEN ADDITION ON PROPERTIES OF SPUTTERED INDIUM TIN OXIDE FILMS. MAKARA of Technology Series, 2013, 16, .	0.0	0
30	Cu2ZnSnSe4Thin Films Preparation by Pulsed Laser Deposition Using Powder Compacted Target. Journal of the Korean Institute of Surface Engineering, 2011, 44, 185-189.	0.1	0
31	Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders. Materials Chemistry and Physics, 2010, 124, 1006-1010.	4.0	24
32	Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders. Journal of Physics and Chemistry of Solids, 2010, 71, 1702-1706.	4.0	34
33	Band gap engineering of RF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application. Solar Energy Materials and Solar Cells, 2009, 93, 941-944.	6.2	13
34	Preparation and characterization of sputtered CuInSe <inf>2</inf> thin films using a single target composed of a mixture CuSe and InSe binary selenides powders. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	0
35	Highly c-Axis Oriented Al-Doped ZnO Thin Films Grown in Premixed H ₂ /Ar Sputtering Gas. Advanced Materials Research, 2007, 29-30, 215-218.	0.3	1
36	Growth of Cu(In _{1-x} Al _x)Se ₂ Thin Films by Atmospheric Pressure Selenization of Sputtered Precursors. Solid State Phenomena, 2007, 124-126, 931-934.	0.3	4

#	Article	IF	CITATIONS
37	Growth and Properties of Stannite-Quaternary Cu ₂ ZnSnSe ₄ Thin Films Prepared by Selenization of Sputtered Binary Compound Precursors. Advanced Materials Research, 2007, 29-30, 79-82.	0.3	5
38	Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets. Journal of Physics and Chemistry of Solids, 2007, 68, 1908-1913.	4.0	151
39	Pulsed laser deposition of quaternary Cu ₂ ZnSnSe ₄ thin films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3373-3379.	1.8	135
40	Properties of Al-doped ZnO thin film sputtered from powder compacted target. Materials Letters, 2006, 60, 1931-1935.	2.6	41
41	Synthesis of Cu(In _{0.75} Al _{0.25})Se ₂ Thin Films from Binary Selenides Powder Compacted Targets by Sputtering and Selenization. Solid State Phenomena, 0, 135, 99-102.	0.3	1
42	Investigation of Deposition Parameters Dependence on Sputtered Cu ₂ ZnSnSe ₄ Thin Films Properties. Advanced Materials Research, 0, 1125, 143-147.	0.3	2