
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991482/publications.pdf Version: 2024-02-01

Ιιλνίριι Ζιιο

#	Article	IF	CITATIONS
1	An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant Journal, 2000, 24, 265-273.	2.8	1,052
2	Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins. Science, 2008, 321, 952-956.	6.0	964
3	The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal, 2002, 30, 349-359.	2.8	573
4	Molecular Genetic Dissection of Quantitative Trait Loci Regulating Rice Grain Size. Annual Review of Genetics, 2014, 48, 99-118.	3.2	369
5	<i>LEAFY COTYLEDON1</i> Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis Â. Plant Physiology, 2008, 148, 1042-1054.	2.3	364
6	Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology, 2001, 19, 157-161.	9.4	313
7	ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress <i>SALICYLIC ACID INDUCTION DEFICIENT2</i> Expression to Negatively Regulate Plant Innate Immunity in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2527-2540.	3.1	267
8	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	13.5	259
9	KORRIGAN, an Arabidopsis Endo-1,4-β-Glucanase, Localizes to the Cell Plate by Polarized Targeting and Is Essential for Cytokinesis. Plant Cell, 2000, 12, 1137-1152.	3.1	258
10	<i>S</i> -Nitrosylation Positively Regulates Ascorbate Peroxidase Activity during Plant Stress Responses. Plant Physiology, 2015, 167, 1604-1615.	2.3	227
11	Site-Specific Nitrosoproteomic Identification of Endogenously <i>S</i> Nitrosylated Proteins in Arabidopsis. Plant Physiology, 2015, 167, 1731-1746.	2.3	202
12	Chemical-inducible systems for regulated expression of plant genes. Current Opinion in Biotechnology, 2000, 11, 146-151.	3.3	190
13	Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Research, 2007, 17, 1030-1040.	5.7	190
14	The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research, 2009, 19, 1377-1387.	5.7	168
15	Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Research, 2009, 19, 224-235.	5.7	156
16	S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nature Communications, 2013, 4, 1529.	5.8	152
17	S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Molecular Cell, 2018, 71, 142-154.e6.	4.5	135
18	Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development. Molecular Plant, 2013, 6, 188-201.	3.9	134

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth Â. Plant Cell, 2010, 22, 1232-1248.	3.1	127
20	Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Research, 2018, 28, 448-461.	5.7	122
21	The Arabidopsis AtIPT8/PGA22 Gene Encodes an Isopentenyl Transferase That Is Involved in De Novo Cytokinin Biosynthesis. Plant Physiology, 2003, 131, 167-176.	2.3	119
22	Functional Characterization of the Arabidopsis Eukaryotic Translation Initiation Factor 5A-2 That Plays a Crucial Role in Plant Growth and Development by Regulating Cell Division, Cell Growth, and Cell Death. Plant Physiology, 2007, 144, 1531-1545.	2.3	113
23	The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Research, 2007, 17, 458-470.	5.7	110
24	Cytokinin Antagonizes Abscisic Acid-Mediated Inhibition of Cotyledon Greening by Promoting the Degradation of ABSCISIC ACID INSENSITIVE5 Protein in Arabidopsis Â. Plant Physiology, 2014, 164, 1515-1526.	2.3	107
25	Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants. Molecular Cell, 2017, 67, 702-710.e4.	4.5	104
26	Protein <i>S</i> â€Nitrosylation in plants: Current progresses and challenges. Journal of Integrative Plant Biology, 2019, 61, 1206-1223.	4.1	103
27	Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 2009, 19, 1178-1190.	5.7	98
28	LESION SIMULATING DISEASE1 Interacts with Catalases to Regulate Hypersensitive Cell Death in Arabidopsis Â. Plant Physiology, 2013, 163, 1059-1070.	2.3	98
29	Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Current Opinion in Biotechnology, 2002, 13, 173-180.	3.3	96
30	Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nature Communications, 2015, 6, 7395.	5.8	95
31	The <i>Arabidopsis LSD1</i> gene plays an important role in the regulation of low temperatureâ€dependent cell death. New Phytologist, 2010, 187, 301-312.	3.5	82
32	Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018, 9, 735.	5.8	82
33	Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Research, 2015, 25, 621-633.	5.7	80
34	Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets inArabidopsis thaliana. FEBS Letters, 2003, 554, 373-380.	1.3	76
35	PARAQUAT RESISTANT1, a Golgi-Localized Putative Transporter Protein, Is Involved in Intracellular Transport of Paraquat Â. Plant Physiology, 2013, 162, 470-483.	2.3	76
36	Serine Palmitoyltransferase, a Key Enzyme for de Novo Synthesis of Sphingolipids, Is Essential for Male Gametophyte Development in Arabidopsis Â. Plant Physiology, 2008, 146, 1322-1332.	2.3	75

#	Article	lF	CITATIONS
37	Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta. Journal of Integrative Plant Biology, 2005, 47, 588-603.	4.1	74
38	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen–Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. Molecular Plant, 2016, 9, 1520-1534.	3.9	73
39	An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host and Microbe, 2020, 27, 601-613.e7.	5.1	66
40	Rice <i>TUTOU1</i> Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development. Plant Physiology, 2015, 169, 1179-1191.	2.3	59
41	Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A. Journal of Cellular Physiology, 1995, 165, 186-200.	2.0	57
42	Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. National Science Review, 2014, 1, 253-276.	4.6	56
43	Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. Developmental Cell, 2020, 53, 444-457.e5.	3.1	51
44	Light-Regulated, Tissue-Specific, and Cell Differentiation-Specific Expression of the Arabidopsis Fe(III)-Chelate Reductase Gene AtFRO6. Plant Physiology, 2006, 140, 1345-1354.	2.3	46
45	LATERAL ROOTLESS2, a Cyclophilin Protein, Regulates Lateral Root Initiation and Auxin Signaling Pathway in Rice. Molecular Plant, 2013, 6, 1719-1721.	3.9	41
46	The <i>ArabidopsisCROWDED NUCLEI</i> genes regulate seed germination by modulating degradation of ABI5 protein. Journal of Integrative Plant Biology, 2016, 58, 669-678.	4.1	41
47	The <i>Arabidopsis</i> Eukaryotic Translation Initiation Factor eIF5A-2 Regulates Root Protoxylem Development by Modulating Cytokinin Signaling. Plant Cell, 2013, 25, 3841-3857.	3.1	40
48	The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14, 1012-1023.	3.9	36
49	Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Research, 2013, 23, 290-299.	5.7	31
50	Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-dependent manner. Physiologia Plantarum, 2006, 127, 277-292.	2.6	28
51	The <i>Arabidopsis BE1</i> Gene, Encoding a Putative Glycoside Hydrolase Localized in Plastids, Plays Crucial Roles during Embryogenesis and Carbohydrate Metabolism. Journal of Integrative Plant Biology, 2010, 52, 273-288.	4.1	26
52	Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis. Journal of Genetics and Genomics, 2022, 49, 756-765.	1.7	26
53	Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sensors and Actuators B: Chemical, 2011, 153, 261-265.	4.0	24
54	Regulation of mitochondrial NAD pool via NAD+ transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Science China Life Sciences, 2019, 62, 991-1002.	2.3	24

#	Article	IF	CITATIONS
55	Deletion of the Initial 45 Residues of ARR18 Induces Cytokinin Response in Arabidopsis. Journal of Genetics and Genomics, 2012, 39, 37-46.	1.7	23
56	DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of <i>ARABIDOPSIS</i> RESPONSE REGULATOR 4. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3568-76.	3.3	22
57	Two Plastid Fatty Acid Exporters Contribute to Seed Oil Accumulation in Arabidopsis. Plant Physiology, 2020, 182, 1910-1919.	2.3	19
58	Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Journal of Genetics and Genomics, 2016, 43, 145-154.	1.7	16
59	Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. Journal of Genetics and Genomics, 2021, 48, 950-953.	1.7	16
60	Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. Journal of Genetics and Genomics, 2022, 49, 469-480.	1.7	12
61	Applications of Chemical-Inducible Expression Systems in Functional Genomics and Biotechnology. , 2006, 323, 329-342.		11
62	Cytokinins. , 2017, , 77-106.		11
63	Say "NO―to ABA signaling in guard cells by S-nitrosylation of OST1. Science China Life Sciences, 2015, 58, 313-314.	2.3	7
64	Cytokinin signal transduction: Known simplicity and unknown complexity. Science Bulletin, 2003, 48, 1309-1315.	1.7	3
65	KORRIGAN, an Arabidopsis Endo-1,4-b-Glucanase, Localizes to the Cell Plate by Polarized Targeting and Is Essential for Cytokinesis. Plant Cell, 2000, 12, 1137.	3.1	2
66	PAT: waking up a lazy sleeping beauty. Cell Research, 2007, 17, 387-388.	5.7	2
67	A new insight to explore the regulation between <i>S</i> â€nitrosylation and <i>N</i> â€glycosylation. Plant Direct, 2019, 3, e00110.	0.8	2
68	Characterization of a new mutant allele of theArabidopsis Flowering Locus D (FLD) gene that controls the flowering time by repressingFLC. Science Bulletin, 2005, 50, 2701-2706.	1.7	1
69	Advances in Arabidopsis research in China from 2006 to 2007. Science Bulletin, 2007, 52, 1729-1733.	1.7	0
70	Fine-mapping of SRT7 for short roots and identification of its candidate in rice. Science Bulletin, 2011, 56, 3296.	1.7	0
71	Somatic Embryogenesis in Arabidopsis thaliana Promoted by the Wuschel Homeodomain Protein. , 2003, , 279-281.		0