Ryan M Mcgranaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991296/publications.pdf

Version: 2024-02-01

752698 840776 31 447 11 20 citations h-index g-index papers 43 43 43 566 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New Capabilities for Prediction of Highâ€Latitude Ionospheric Scintillation: A Novel Approach With Machine Learning. Space Weather, 2018, 16, 1817-1846.	3.7	49
2	Modes of highâ€latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis. Journal of Geophysical Research: Space Physics, 2015, 120, 11,013.	2.4	37
3	A Comprehensive Analysis of Multiscale Fieldâ€Aligned Currents: Characteristics, Controlling Parameters, and Relationships. Journal of Geophysical Research: Space Physics, 2017, 122, 11,931.	2.4	33
4	Optimal interpolation analysis of high″atitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction. Journal of Geophysical Research: Space Physics, 2016, 121, 4898-4923.	2.4	32
5	Ushering in a New Frontier in Geospace Through Data Science. Journal of Geophysical Research: Space Physics, 2017, 122, 12,586.	2.4	28
6	Selfâ€Consistent Modeling of Electron Precipitation and Responses in the Ionosphere: Application to Lowâ€Altitude Energization During Substorms. Geophysical Research Letters, 2018, 45, 6371-6381.	4.0	25
7	Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON). Acta Astronautica, 2015, 117, 116-129.	3.2	24
8	Impact of equinoctial high-speed stream structures on thermospheric responses. Space Weather, 2014, 12, 277-297.	3.7	20
9	A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. Journal of Geophysical Research: Space Physics, 2015, 120, 4936-4949.	2.4	18
10	Toward a Next Generation Particle Precipitation Model: Mesoscale Prediction Through Machine Learning (a Case Study and Framework for Progress). Space Weather, 2021, 19, e2020SW002684.	3.7	15
11	Highâ€latitude ionospheric conductivity variability in three dimensions. Geophysical Research Letters, 2016, 43, 7867-7877.	4.0	14
12	Geomagnetic Stormâ€Induced Plasma Density Enhancements in the Southern Polar Ionospheric Region: A Comparative Study Using St. Patrick's Day Storms of 2013 and 2015. Space Weather, 2020, 18, e2019SW002383.	3.7	14
13	Application usability levels: a framework for tracking project product progress. Journal of Space Weather and Space Climate, 2019, 9, A34.	3.3	13
14	Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content. Journal of Geophysical Research: Space Physics, 2017, 122, 7683-7697.	2.4	12
15	Semianalytical Estimation of Energy Deposition in the Ionosphere by Monochromatic Alfvén Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 5210-5222.	2.4	12
16	Space Weather research in the Digital Age and across the full data lifecycle: Introduction to the Topical Issue. Journal of Space Weather and Space Climate, 2021, 11, 50.	3.3	10
17	Critical Risk Indicators (CRIs) for the electric power grid: a survey and discussion of interconnected effects. Environment Systems and Decisions, 2021, 41, 594-615.	3.4	9
18	Impacts of Multiscale FACs on the Ionosphereâ€Thermosphere System: GITM Simulation. Journal of Geophysical Research: Space Physics, 2019, 124, 3532-3542.	2.4	8

#	Article	IF	CITATIONS
19	Navigation Between Geosynchronous and Lunar L1 Orbiters. , 2012, , .		7
20	Forecasting Occurrence and Intensity of Geomagnetic Activity With Patternâ€Matching Approaches. Space Weather, 2021, 19, e2020SW002624.	3.7	7
21	Evaluation of Total Electron Content Prediction Using Three Ionosphereâ€Thermosphere Models. Space Weather, 2020, 18, e2020SW002452.	3.7	6
22	LiAISON-Supplemented Navigation for Geosynchronous and Lunar L1 Orbiters. , 2012, , .		5
23	Geomagnetically Induced Currents at Middle Latitudes: 1. Quietâ€√ime Variability. Space Weather, 2022, 20, e2021SW002729.	3.7	4
24	On the role of neutral flow in field-aligned currents. Annales Geophysicae, 2018, 36, 53-57.	1.6	3
25	Revealing Novel Connections Between Space Weather and the Power Grid: Network Analysis of Groundâ€Based Magnetometer and Geomagnetically Induced Currents (GIC) Measurements. Space Weather, 2022, 20, .	3.7	3
26	Design of a low cost mission to the Neptunian system. , 2014, , .		2
27	How Do We Accomplish System Science in Space?. Eos, 2018, 99, .	0.1	2
28	Global Geomagnetic Perturbation Forecasting Using Deep Learning. Space Weather, 2022, 20, .	3.7	2
29	Eight Lessons I Learned Leading a Scientific "Design Sprint― Eos, 2019, 100, .	0.1	1
30	Gaining the most utility from our geospace observational system: Network analysis of total electron content as a means to understand space weather to the point of prediction., 2017,,.		0
31	Harnessing expressive capacity of Machine Learning modeling to represent complex coupling of Earthâ \in^{TM} s auroral space weather regimes. , 2021, , .		0