Xiaoshun Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991282/publications.pdf

Version: 2024-02-01

257101 189595 2,878 52 24 50 h-index citations g-index papers 52 52 52 2302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-pulsations in a microcavity Brillouin laser. Optics Letters, 2022, 47, 421.	1.7	4
2	High-power, low-noise Brillouin laser on a silicon chip. Optics Letters, 2022, 47, 1638.	1.7	7
3	Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator. Physical Review Letters, 2021, 126, 063901.	2.9	74
4	Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip. Photonics Research, 2021, 9, 722.	3.4	8
5	Batch Fabrication of Highâ€Quality Infrared Chalcogenide Microsphere Resonators. Small, 2021, 17, e2100140.	5.2	4
6	Generation of Optical Frequency Comb via Giant Optomechanical Oscillation. Physical Review Letters, 2021, 127, 134301.	2.9	29
7	A Compact and Highly Sensitive Voice-Eavesdropping Microresonator. Journal of Lightwave Technology, 2021, 39, 6327-6333.	2.7	10
8	Photonic Flywheel in a Monolithic Fiber Resonator. Physical Review Letters, 2020, 125, 143902.	2.9	52
9	Free-space self-interference microresonator with tunable coupling regimes. Applied Physics Letters, 2020, 117, 031106.	1.5	3
10	Hyperboloidâ€Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG. Small, 2020, 16, e2000239.	5.2	36
11	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	4.4	31
12	Fast- and slow-light-enhanced light drag in a moving microcavity. Communications Physics, 2020, 3, .	2.0	19
13	Controllable coupling between an ultra-high-Q microtoroid cavity and a graphene monolayer for optical filtering and switching applications. Optics Express, 2020, 28, 7906.	1.7	12
14	Mid-infrared chalcogenide microfiber knot resonators. Photonics Research, 2020, 8, 616.	3.4	13
15	Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser. Nanophotonics, 2020, 9, 2915-2925.	2.9	19
16	Absorption and gain saturable nonlinearities in erbium-doped optical microcavities. Physical Review A, 2019, 100, .	1.0	2
17	Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Research, 2019, 7, 573.	3.4	27
18	High- <i>Q</i> and highly reproducible microdisks and microlasers. Nanoscale, 2018, 10, 2045-2051.	2.8	20

#	Article	IF	CITATIONS
19	Parity-time symmetry in optical microcavity systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 222001.	0.6	45
20	New Insights into the Multiexciton Dynamics in Phase-Pure Thick-Shell CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 25059-25066.	1.5	16
21	Transmission Nonreciprocity in a Mutually Coupled Circulating Structure. Physical Review Letters, 2018, 120, 203904.	2.9	48
22	Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip. Optics Communications, 2017, 395, 51-54.	1.0	16
23	Polarized light source based on graphene-nanoribbon hybrid structure. Optics Communications, 2017, 395, 76-81.	1.0	10
24	Realization of controllable photonic molecule based on three ultrahighâ€Q microtoroid cavities. Laser and Photonics Reviews, 2017, 11, 1600178.	4.4	33
25	Analysis of a triple-cavity photonic molecule based on coupled-mode theory. Physical Review A, 2017, 95, .	1.0	18
26	High-order filters based on three high-Q microtoroid cavities. , 2017, , .		0
27	Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]. Photonics Research, 2017, 5, B54.	3.4	23
28	Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum. Photonics Research, 2017, 5, 73.	3.4	23
29	Demonstration of a chip-based optical isolator with parametric amplification. Nature Communications, 2016, 7, 13657.	5 . 8	89
30	Optomechanically tuned electromagnetically induced transparency-like effect in coupled optical microcavities. Applied Physics Letters, 2016, 109, .	1.5	30
31	On-Chip Optical Nonreciprocity Using an Active Microcavity. Scientific Reports, 2016, 6, 38972.	1.6	23
32	Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity. Photonics, 2015, 2, 498-508.	0.9	11
33	High-Q silica microdisk optical resonators with large wedge angles on a silicon chip. Photonics Research, 2015, 3, 279.	3.4	18
34	Radiation-pressure-driven mechanical oscillations in silica microdisk resonators on chip. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-4.	2.0	2
35	Demonstration of ultralow-threshold 2 micrometer microlasers on chip. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	18
36	A chip-based microcavity derived from multi-component tellurite glass. Journal of Materials Chemistry C, 2015, 3, 5141-5144.	2.7	5

#	Article	IF	Citations
37	Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photonics, 2014, 8, 524-529.	15.6	910
38	Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Physics Letters, 2013, 10, 105809.	0.6	28
39	Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities. Optics Express, 2012, 20, 18319.	1.7	76
40	Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity. Optics Express, 2012, 20, 29472.	1.7	20
41	Hybrid structure microlaser based on a nanowire and a silica microdisk cavity. , 2012, , .		0
42	Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Applied Physics Letters, 2009, 94, .	1.5	47
43	High-Q double-disk microcavities for cavity optomechanics. Optics Express, 2009, 17, 20911.	1.7	77
44	Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force. Physical Review Letters, 2009, 103, 103601.	2.9	158
45	Polymer micro or nanofibers for optical device applications. Journal of Applied Polymer Science, 2008, 110, 1080-1084.	1.3	28
46	Low-Threshold Microlaser in Er : Yb Phosphate Glass Coated Microsphere. IEEE Photonics Technology Letters, 2008, 20, 342-344.	1.3	39
47	Coupling Whispering-Gallery-Mode Microcavities With Modal Coupling Mechanism. IEEE Journal of Quantum Electronics, 2008, 44, 1065-1070.	1.0	18
48	All-fiber add-drop filters based on microfiber knot resonators. Optics Letters, 2007, 32, 1710.	1.7	154
49	Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 2007, 90, 233501.	1.5	134
50	Demonstration of optical microfiber knot resonators. Applied Physics Letters, 2006, 88, 223501.	1.5	227
51	Modeling rare-earth doped microfiber ring lasers. Optics Express, 2006, 14, 7073.	1.7	26
52	Demonstration of microfiber knot laser. Applied Physics Letters, 2006, 89, 143513.	1.5	138