İbrahİm Karaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699126/publications.pdf

Version: 2024-02-01

382 papers 16,114 citations

69 h-index 102 g-index

390 all docs

390 docs citations

times ranked

390

7210 citing authors

#	Article	IF	CITATIONS
1	Bayesian Calibration of Multiple Coupled Simulation Models for Metal Additive Manufacturing: A Bayesian Network Approach. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2022, 8, .	1.1	5
2	Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys. Materials Science & Described and Processing, 2022, 829, 142154.	5.6	10
3	A differential evaporation model to predict chemistry change of additively manufactured metals. Materials and Design, 2022, 213, 110328.	7.0	4
4	Thermal- and stress-induced martensitic transformations in [0 0 1]-oriented Ni44Fe19Ga27Co10 single crystals. Materials Letters, 2022, 310, 131477.	2.6	5
5	Data-driven shape memory alloy discovery using Artificial Intelligence Materials Selection (AIMS) framework. Acta Materialia, 2022, 228, 117751.	7.9	23
6	Compositional and microstructural sensitivity of the actuation fatigue response in NiTiHf high temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142786.	5.6	14
7	Effects of microstructure and composition on constitutive response of high temperature shape memory alloys: Micromechanical modeling using 3-D reconstructions with experimental validation. Acta Materialia, 2022, 232, 117929.	7.9	7
8	Engineering thermal hysteresis of ferromagnetic shape memory alloy sensory particles. Scripta Materialia, 2022, 213, 114619.	5.2	1
9	Laser Powder Bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Tensile Superelasticity. Acta Materialia, 2022, 229, 117781.	7.9	79
10	Corrosion behavior of Mg-Zn-Zr-RE alloys under physiological environment – Impact on mechanical integrity and biocompatibility. Journal of Magnesium and Alloys, 2022, 10, 1542-1572.	11.9	20
11	Hybrid microstructure-defect printability map in laser powder bed fusion additive manufacturing. Computational Materials Science, 2022, 209, 111401.	3.0	5
12	The shape memory effect and superelasticity in [001]-oriented NiFeGaCo single crystals in dependence on cobalt concentration. AIP Conference Proceedings, 2022, , .	0.4	1
13	Review: additive manufacturing of pure tungsten and tungsten-based alloys. Journal of Materials Science, 2022, 57, 9769-9806.	3.7	8
14	Extending the Fatigue Life of NiTiHf High Temperature Shape Memory Alloys through Partial Thermal Cycling. , 2022, , .		1
15	Role of thermally-stable deformation twins on the high-temperature mechanical response of an austenitic stainless steel. Materials Science & Spineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143199.	5.6	5
16	Aerospace, Energy Recovery, and Medical Applications: Shape Memory Alloy Case Studies for CASMART 3rd Student Design Challenge. Shape Memory and Superelasticity, 2022, 8, 150-167.	2.2	2
17	Structure and substructure characterization of solution-treated Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Scripta Materialia, 2022, 219, 114888.	5.2	4
18	Actuation-Induced stable crack growth in near-equiatomic nickel-titanium shape memory alloys: Experimental and numerical analysis. International Journal of Solids and Structures, 2021, 221, 165-179.	2.7	7

#	Article	IF	CITATIONS
19	On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Materialia, 2021, 205, 116540.	7.9	69
20	Fabrication and characterization of aluminum - magnetic shape memory alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140549.	5.6	2
21	Experimental observations of "reversible―transformation toughening. Scripta Materialia, 2021, 191, 81-85.	5.2	6
22	Half metallicity in Cr substituted Fe2TiSn. Scientific Reports, 2021, 11, 524.	3.3	10
23	The effect of stress-induced martensite aging in tension and compression on B2–B19′ martensitic transformation in Ni _{50.3} Ti _{32.2} Hf _{17.5} high-temperature shape memory alloy. Smart Materials and Structures, 2021, 30, 025039.	3.5	7
24	Nucleation site potency distributions in thermoelastic martensitic transformation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ni</mml:mi><mml:rparticles. .<="" 2021,="" 5,="" materials,="" physical="" review="" td=""><td>mn >24-33 < /m</td><td>ml:mn></td></mml:rparticles.></mml:msub></mml:mrow></mml:math>	mn >24-33 < /m	ml:mn>
25	Laser-based additive manufacturing of a binary Ni-5 wt.%Nb alloy. Journal of Manufacturing Processes, 2021, 62, 720-728.	5.9	7
26	Special Issue Focus Mechanics and Physics of Active Materials and Systems. Shape Memory and Superelasticity, 2021, 7, 5-6.	2.2	O
27	Effect of Specimen Thickness on the Fracture Toughness of a NiTi Shape Memory Alloy. Shape Memory and Superelasticity, 2021, 7, 90-100.	2.2	6
28	Competing Interactions between Mesoscale Length-Scales, Order-Disorder, and Martensitic Transformation in Ferromagnetic Shape Memory Alloys. Acta Materialia, 2021, 206, 116616.	7.9	16
29	Significant disparity of non-basal dislocation activities in hot-rolled highly-textured Mg and Mg-3Al-1Zn alloy under tension. Acta Materialia, 2021, 207, 116691.	7.9	41
30	Tube equal channel angular extrusion (tECAE) of Mg–3Al–1Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141236.	5.6	8
31	In-situ investigation of anisotropic crystalline and bulk negative thermal expansion in titanium alloys. Acta Materialia, 2021, 210, 116847.	7.9	5
32	Shape Memory Alloy-Enabled Expandable Space Habitatâ€"Case Studies for Second CASMART Student Design Challenge. Shape Memory and Superelasticity, 2021, 7, 280-303.	2.2	5
33	Modelling dynamic recrystallisation in magnesium alloy AZ31. International Journal of Plasticity, 2021, 142, 102995.	8.8	29
34	The Effects of Annealing After Equal Channel Angular Extrusion (ECAE) on Mechanical and Magnetic Properties of 49Fe-49Co-2V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4090-4099.	2.2	3
35	A printability assessment framework for fabricating low variability nickel-niobium parts using laser powder bed fusion additive manufacturing. Rapid Prototyping Journal, 2021, 27, 1737-1748.	3.2	6
36	Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Materialia, 2021, 215, 117017.	7.9	78

#	Article	IF	CITATIONS
37	A unified description of mechanical and actuation fatigue crack growth in shape memory alloys. Acta Materialia, 2021, 217, 117155.	7.9	14
38	Martensitic Transformation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mm 115704.<="" 127,="" 2021,="" letters,="" physical="" review="" td=""><td>l:mv:sw><r< td=""><td>mmılzmi>x</td></r<></td></mm></mml:mrow></mml:mrow></mml:mrow></mml:math>	l:m v:s w> <r< td=""><td>mmılzmi>x</td></r<>	mm ıl zmi>x
39	Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures. Scripta Materialia, 2021, 202, 113995.	5.2	26
40	An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing. Additive Manufacturing, 2021, 46, 102018.	3.0	9
41	Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys. Acta Materialia, 2021, 218, 117232.	7.9	21
42	NiTiHf shape memory alloys as phase change thermal storage materials. Acta Materialia, 2021, 218, 117175.	7.9	18
43	Effect of composition and phase diagram features on printability and microstructure in laser powder bed fusion: Development and comparison of processing maps across alloy systems. Additive Manufacturing, 2021, 47, 102258.	3.0	3
44	A rigorous test and improvement of the Eagar-Tsai model for melt pool characteristics in laser powder bed fusion additive manufacturing. Additive Manufacturing, 2021, 47, 102300.	3.0	2
45	Effect of heat treatments on the microstructure and mechanical properties of an ultra-high strength martensitic steel fabricated via laser powder bed fusion additive manufacturing. Additive Manufacturing, 2021, 47, 102255.	3.0	7
46	Part I.: Friction stir welding of equiatomic nickel titanium shape memory alloy – microstructure, mechanical and corrosion behavior. Journal of Advanced Joining Processes, 2021, 4, 100071.	2.7	6
47	Fracture resistance of shape memory alloys under thermomechanical loading. Engineering Fracture Mechanics, 2021, 258, 108059.	4.3	3
48	The Effect of Subsequent Stress-Induced Martensite Aging on the Viscoelastic Properties of Aged NiTiHf Polycrystals. Metals, 2021, 11, 1890.	2.3	0
49	An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Materialia, 2020, 186, 199-214.	7.9	151
50	Design of alumina-forming austenitic stainless steel using genetic algorithms. Materials and Design, 2020, 186, 108198.	7.0	15
51	Finite interface dissipation phase field modeling of Ni–Nb under additive manufacturing conditions. Acta Materialia, 2020, 185, 320-339.	7.9	83
52	Effects of composition on the mechanical properties and negative thermal expansion in martensitic TiNb alloys. Scripta Materialia, 2020, 178, 351-355.	5.2	22
53	Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139857.	5.6	33
54	Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: the role of bimodal grain structure and \hat{l}^2 -Mg17Al12 precipitates. Materialia, 2020, 13, 100840.	2.7	49

#	Article	IF	CITATIONS
55	Effects of dynamic recrystallization and strain-induced dynamic precipitation on the corrosion behavior of partially recrystallized Mg–9Al–1Zn alloys. Journal of Magnesium and Alloys, 2020, 8, 1016-1037.	11.9	56
56	Modeling of the ECAP Induced Strain Hardening Behavior in FCC Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5453-5474.	2.2	9
57	Modelling the temperature and texture effects on the deformation mechanisms of magnesium alloy AZ31. International Journal of Mechanical Sciences, 2020, 182, 105727.	6.7	36
58	The effects of severe plastic deformation on the mechanical and corrosion characteristics of a bioresorbable Mg-ZKQX6000 alloy. Materials Science and Engineering C, 2020, 115, 111130.	7.3	23
59	Evolution of anisotropic and negative thermal expansion in rolled equiatomic nickel-titanium martensite. Scripta Materialia, 2020, 186, 142-146.	5.2	10
60	Emergent properties in the natural composite Ni ₂ MnSb _{0.5} Al _{0.5} . Journal Physics D: Applied Physics, 2020, 53, 225302.	2.8	1
61	Two-way shape memory effect in stress-induced martensite aged Ni50.3Ti32.2Hf17.5 alloy. Materials Letters, 2020, 268, 127589.	2.6	7
62	Activation and suppression of ã€^cÂ+Âa〉 dislocations in a textured Mg–3Al–1Zn alloy. Scripta Materialia, 2020, 179, 49-54.	5.2	22
63	Statistical modelling of microsegregation in laser powder-bed fusion. Philosophical Magazine Letters, 2020, 100, 271-282.	1.2	4
64	Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing. Scripta Materialia, 2020, 184, 63-69.	5.2	19
65	Effect of twinning on the orientation dependence of mechanical behaviour and fracture in single crystals of the equiatomic CoCrFeMnNi high-entropy alloy at 77K. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139315.	5.6	28
66	Evolution of mechanical behavior of magnesium alloy infiltrated 3D-printed CoCr scaffolds under corrosion in simulated body fluid. Materials Science and Engineering C, 2019, 105, 109747.	7.3	8
67	Special Features of Functional Properties of Heterophase High-Strength Ni50.2Ti37.3Hf12.5 Polycrystals and Single Crystals. Russian Physics Journal, 2019, 62, 534-540.	0.4	3
68	Functionally Graded Materials through robotics-inspired path planning. Materials and Design, 2019, 182, 107975.	7.0	28
69	Assessing printability maps in additive manufacturing of metal alloys. Acta Materialia, 2019, 176, 199-210.	7.9	146
70	Large Dimension and Low-Cost Fe-SMA Rods. MATEC Web of Conferences, 2019, 271, 01005.	0.2	1
71	Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip. Acta Materialia, 2019, 181, 555-569.	7.9	72
72	Embedded magnetic shape memory sensory particles in lightweight composites for crack detection. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 201-213.	5.6	19

#	Article	IF	Citations
73	Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Materialia, 2019, 175, 107-120.	7.9	44
74	Integrated Health Monitoring of Transportation Structures with Magnetic Fe-SMA Wires. MATEC Web of Conferences, 2019, 271, 01008.	0.2	2
7 5	Orientation dependence of superelasticity in FeMnAlNi single crystals under compression. Scripta Materialia, 2019, 166, 48-52.	5.2	33
76	Stable crack growth in NiTi shape memory alloys: 3D finite element modeling and experimental validation. Smart Materials and Structures, 2019, 28, 064001.	3.5	16
77	Inverse Optimization to Design Processing Paths to Tailor Formability of Mg Alloys. Minerals, Metals and Materials Series, 2019, , 239-246.	0.4	0
78	Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn. Acta Materialia, 2019, 168, 448-472.	7.9	49
79	Effect of Temperature on the Fracture Toughness of a NiTiHf High Temperature Shape Memory Alloy. Shape Memory and Superelasticity, 2019, 5, 362-373.	2.2	11
80	Ultra-high temperature multi-component shape memory alloys. Scripta Materialia, 2019, 158, 83-87.	5.2	68
81	Strength and ductility of powder consolidated ultrafine-grain tantalum. International Journal of Refractory Metals and Hard Materials, 2019, 80, 73-84.	3.8	8
82	Martensitic transformation and magnetocaloric properties of NiCoMnSn magnetic shape memory alloys. Intermetallics, 2019, 106, 65-70.	3.9	18
83	On the fast kinetics of B2–L21 ordering in Ni-Co-Mn-In metamagnetic shape memory alloys. Journal of Alloys and Compounds, 2019, 781, 479-489.	5.5	10
84	Thermal, acoustic and magnetic noises emitted during martensitic transformation in single crystalline Ni45Co5Mn36.6In13.4 meta-magnetic shape memory alloy. Journal of Alloys and Compounds, 2019, 778, 669-680.	5.5	5
85	Effects of composition and crystallographic ordering on the ferromagnetic transition in Ni Co Mn In magnetic shape memoryÂalloys. Acta Materialia, 2019, 166, 630-637.	7.9	8
86	Effects of Testing Parameters on the Fatigue Performance NiTiHf High Temperature Shape Memory Alloys. , 2019, , .		3
87	Characterization and Processing of High Temperature Shape Memory Alloys for Aerospace Applications. , 2019, , .		5
88	The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scripta Materialia, 2019, 161, 78-83.	5.2	51
89	Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys. Journal of Materials Science, 2019, 54, 1857-1871.	3.7	12
90	Fracture toughness of NiTi–Towards establishing standard test methods for phase transforming materials. Acta Materialia, 2019, 162, 226-238.	7.9	42

#	Article	IF	Citations
91	Two way shape memory effect in NiTiHf high temperature shape memory alloy tubes. Acta Materialia, 2019, 163, 1-13.	7.9	47
92	Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti-6Al-4V. IISE Transactions, 2019, 51, 136-152.	2.4	62
93	Fracture toughness of martensitic NiTiHf high-temperature shape memory alloy. , 2019, , .		3
94	Martensitic Transformations of Ni–Mn–X Heusler Alloys with XÂ=ÂGa, In and Sn. Minerals, Metals and Materials Series, 2018, , 185-188.	0.4	0
95	Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Materialia, 2018, 153, 156-168.	7.9	41
96	Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 57-64.	5.6	29
97	Relative cooling power enhancement by tuning magneto-structural stability in Ni-Mn-In Heusler alloys. Journal of Alloys and Compounds, 2018, 744, 785-790.	5.5	17
98	Firstâ€Principles Characterization of Equilibrium Vacancy Concentration in Metamagnetic Shape Memory Alloys: An Example of Ni ₂ MnGa. Physica Status Solidi (B): Basic Research, 2018, 255, 1700523.	1.5	6
99	Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 253-259.	5.6	30
100	H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2018, 4, 85-92.	2.2	32
101	Design, fabrication, and testing of a multiple-actuation shape memory alloy pipe coupler. Journal of Intelligent Material Systems and Structures, 2018, 29, 1165-1182.	2.5	15
102	On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Materialia, 2018, 142, 95-106.	7.9	67
103	Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging. Scripta Materialia, 2018, 142, 153-157.	5.2	36
104	Tensile actuation response of additively manufactured nickel-titanium shape memory alloys. Scripta Materialia, 2018, 146, 164-168.	5.2	74
105	The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu ₇₃ Al ₁₆ Mn _{11} shape memory alloy. Smart Materials and Structures, 2018, 27, 015028.	3.5	11
106	Orientation Dependence of the Elastocaloric Effect in Ni ₅₄ Fe ₁₉ Ga ₂₇ Ferromagnetic Shape Memory Alloy. Physica Status Solidi (B): Basic Research, 2018, 255, 1700437.	1.5	16
107	Crack Growth Behavior in NiTi Shape Memory Alloys Under Mode-I Isothermal Loading: Effect of Stress State. , 2018, , .		4
108	On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. Journal of Manufacturing Processes, 2018, 35, 672-680.	5.9	75

#	Article	IF	CITATIONS
109	Probing Glassiness in Heuslers via Density Functional Theory Calculations. Springer Series in Materials Science, 2018, , 153-182.	0.6	1
110	Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Materials and Design, 2018, 160, 810-827.	7.0	83
111	Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part I: Processing and mechanical properties. Journal of Materials Research, 2018, 33, 2168-2175.	2.6	13
112	Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing. Integrating Materials and Manufacturing Innovation, 2018, 7, 116-135.	2.6	36
113	Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Materialia, 2018, 157, 228-244.	7.9	36
114	Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	41
115	Glassy Phonon Heralds a Strain Glass State in a Shape Memory Alloy. Physical Review Letters, 2018, 120, 245701.	7.8	24
116	On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys. Materials Research Letters, 2018, 6, 442-449.	8.7	78
117	Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties. Journal of Materials Research, 2018, 33, 2176-2188.	2.6	7
118	Full-Field Micromechanics of Precipitated Shape Memory Alloys. , 2018, , 225-255.		0
119	Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi. Shape Memory and Superelasticity, 2017, 3, 9-23.	2.2	8
120	Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys. Scientific Reports, 2017, 7, 40434.	3.3	46
121	Ductility Enhancement in Mg Alloys by Anisotropy Engineering. Minerals, Metals and Materials Series, 2017, , 153-158.	0.4	0
122	Combined Effects of Grain Size Refinement and Dynamic Precipitation on Mechanical Properties of a New Magnesium Alloy. Minerals, Metals and Materials Series, 2017, , 43-51.	0.4	2
123	Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 2017, 131, 349-362.	7.9	40
124	Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	28
125	On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scripta Materialia, 2017, 135, 92-96.	5. 2	33
126	Spatial Control of Functional Response in 4D-Printed Active Metallic Structures. Scientific Reports, 2017, 7, 46707.	3.3	109

#	Article	IF	Citations
127	A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. Journal of Materials Science, 2017, 52, 11048-11076.	3.7	35
128	Analysis of Magnetization as a Function of Temperature for CoMn1â^'x Fe x Ge. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3587-3594.	1.8	5
129	Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Materialia, 2017, 134, 66-70.	5.2	58
130	Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 694, 121-131.	5.6	42
131	Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 176-181.	5. 6	61
132	Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Materialia, 2017, 138, 185-197.	7.9	48
133	A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts. Scientific Reports, 2017, 7, 3604.	3.3	55
134	The effect of dynamic aging on the cyclic stability of Cu 73 Al 16 Mn 11 shape memory alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 352-358.	5.6	17
135	On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scripta Materialia, 2017, 126, 20-23.	5. 2	51
136	Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys. Acta Materialia, 2017, 124, 501-512.	7.9	61
137	Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scripta Materialia, 2016, 124, 47-50.	5.2	37
138	Cytocompatibility evaluation of <scp>N</scp> i <scp>M</scp> n <scp>S</scp> n metaâ€magnetic shape memory alloys for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 853-863.	3.4	8
139	Impact of cycle-hysteresis interactions on the performance of giant magnetocaloric effect refrigerants. Materials Research Express, 2016, 3, 074001.	1.6	13
140	Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons. Journal of Applied Physics, 2016, 120, .	2.5	40
141	Mechanisms of plastic deformation in [$1\hat{A}^-11$]-oriented single crystals of FeNiMnCrCo high entropy alloy. AIP Conference Proceedings, 2016, , .	0.4	8
142	Accessibility investigation of large magnetic entropy change in CoMn1â^'xFexGe. Journal of Applied Physics, 2016, 119, .	2.5	22
143	Slip and Twinning in the [$1 \hat{A}^-$ \$\$ overline{mathbf{1}} \$\$ 49]-Oriented Single Crystals of a High-Entropy Alloy. Russian Physics Journal, 2016, 59, 1242-1250.	0.4	19
144	Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scripta Materialia, 2016, 116, 147-151.	5.2	66

#	Article	IF	CITATIONS
145	Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scripta Materialia, 2016, 119, 43-46.	5.2	30
146	Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scripta Materialia, 2016, 125, 68-72.	5.2	53
147	High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures. Scientific Reports, 2016, 6, 35523.	3.3	24
148	Compressive performance and crack propagation in Al alloy/Ti2AlC composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 247-256.	5.6	40
149	Applications of the directional solidification in magnetic shape memory alloys. IOP Conference Series: Materials Science and Engineering, 2016, 117, 012029.	0.6	3
150	Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Materialia, 2016, 121, 374-383.	7.9	89
151	Dynamic precipitation in Mg-3Al-1Zn alloy during different plastic deformation modes. Acta Materialia, 2016, 116, 1-13.	7.9	63
152	Active Cooling of a Microvascular Shape Memory Alloyâ€Polymer Matrix Composite Hybrid Material. Advanced Engineering Materials, 2016, 18, 1145-1153.	3.5	18
153	Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys — The role of grain orientation. Scripta Materialia, 2016, 114, 156-160.	5.2	61
154	Direct measure of giant magnetocaloric entropy contributions in Ni–Mn–In. Acta Materialia, 2016, 105, 176-181.	7.9	46
155	Role of nano-precipitation on the microstructure and shape memory characteristics of a new Ni50.3Ti34.7Zr15 shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 193-203.	5.6	39
156	Tailored thermal expansion alloys. Acta Materialia, 2016, 102, 333-341.	7.9	92
157	Atomic order and martensitic transformation entropy change in Ni–Co–Mn–In metamagnetic shape memory alloys. Scripta Materialia, 2016, 110, 61-64.	5.2	24
158	Microstructural Design of Mg Alloys for Lightweight Structural Applications. , 2016, , 225-233.		0
159	Lattice vibrations boost demagnetization entropy in a shape-memory alloy. Physical Review B, 2015, 92, .	3.2	19
160	High-field magneto-thermo-mechanical testing system for characterizing multiferroic bulk alloys. Review of Scientific Instruments, 2015, 86, 113902.	1.3	21
161	Effect of Thermal Treatments on Ni–Mn–Ga and Ni-Rich Ni–Ti–Hf/Zr High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2015, 1, 418-428.	2.2	13
162	Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Materialia, 2015, 89, 374-383.	7.9	89

#	Article	IF	Citations
163	Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2015, 1, 429-449.	2.2	1
164	Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy. Smart Materials and Structures, 2015, 24, 125023.	3.5	48
165	The effect of precipitates on the superelastic response of [1 0 0] oriented FeMnAlNi single crystals under compression. Acta Materialia, 2015, 97, 234-244.	7.9	104
166	A Preisach-Based Nonequilibrium Methodology for Simulating Performance of Hysteretic Magnetic Refrigeration Cycles. Jom, 2015, 67, 2123-2132.	1.9	6
167	On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scripta Materialia, 2015, 108, 23-26.	5.2	92
168	Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scripta Materialia, 2015, 101, 1-4.	5.2	38
169	Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy. Scripta Materialia, 2015, 105, 42-45.	5.2	133
170	Role of starting texture and deformation modes on low-temperature shear formability and shear localization of Mg–3Al–1Zn alloy. Acta Materialia, 2015, 89, 408-422.	7.9	88
171	Multiple ferroic glasses via ordering. Acta Materialia, 2015, 101, 107-115.	7.9	45
172	Mechanical properties and microstructure of removable partial denture clasps manufactured using selective laser melting. Additive Manufacturing, 2015, 8, 117-123.	3.0	24
173	Interfacial study of NiTi–Ti3SiC2 solid state diffusion bonded joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 168-177.	5.6	30
174	Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Materialia, 2015, 83, 48-60.	7.9	115
175	The Tunable Microstructure and Its Influence on the Giant Magnetocaloric Effect in Magnetic Shape Memory Alloys. , 2015, , 139-147.		1
176	Alloy Design Strategies Through Computational Thermodynamics and Kinetics Approaches. , 2015, , 461-470.		0
177	Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Applied Physics Letters, 2014, 105, .	3.3	49
178	Calorimetric and magnetic study for Ni50Mn36In14 and relative cooling power in paramagnetic inverse magnetocaloric systems. Journal of Applied Physics, 2014, 116, .	2.5	30
179	Influence of tantalum additions on the microstructure and shape memory response of Ti 50.5 Ni 24.5 Pd 25 high-temperature shape memory alloy. Materials Science & Digherening A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 250-258.	5.6	23
180	Current-Activated, Pressure-Assisted Infiltration: A Novel, Versatile Route for Producing Interpenetrating Ceramic–Metal Composites. Materials Research Letters, 2014, 2, 124-130.	8.7	25

#	Article	IF	Citations
181	Shape Memory Effect and Superelasticity in Single Crystals of High-Strength Ferromagnetic Alloys. Advanced Materials Research, 2014, 1013, 15-22.	0.3	9
182	Fabrication and characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC composites. Journal of Alloys and Compounds, 2014, 610, 635-644.	5. 5	35
183	The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration. Acta Materialia, 2014, 74, 66-84.	7.9	97
184	Influence of grain boundary on pseudoelasticity in highly-oriented polycrystalline Ni 52 Fe 17 Ga 27 Co 4 ferromagnetic shape memory alloy. Materials Letters, 2014, 114, 11-14.	2.6	13
185	Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy–MAX Phase Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2646-2658.	2.2	19
186	Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy. Wear, 2014, 311, 149-158.	3.1	99
187	Mechanical Properties of Nanocrystalline and Ultrafineâ€Grained Nickel with Bimodal Microstructure. Advanced Engineering Materials, 2014, 16, 1323-1339.	3.5	18
188	Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: Modeling and experiments. Journal of the Mechanics and Physics of Solids, 2014, 69, 33-66.	4.8	44
189	An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. International Journal of Plasticity, 2014, 57, 1-15.	8.8	103
190	Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling. Acta Materialia, 2014, 68, 267-278.	7.9	15
191	Computational thermodynamics of the CoNiGa high temperature shape memory alloy system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 45, 167-177.	1.6	4
192	The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi. Technical Physics Letters, 2014, 40, 747-750.	0.7	27
193	Improvement of formability of ultrafine-grained materials by post-SPD annealing. Materials Science & Science & Science & Science & Structural Materials: Properties, Microstructure and Processing, 2014, 619, 119-128.	5.6	24
194	Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Materialia, 2014, 79, 126-137.	7.9	53
195	Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 220-227.	5.6	47
196	Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high-temperature shape memory alloy. Scripta Materialia, 2014, 81, 12-15.	5.2	54
197	Two Types of Martensitic Phase Transformations in Magnetic Shape Memory Alloys by Inâ€ S itu Nanoindentation Studies. Advanced Materials, 2014, 26, 3893-3898.	21.0	28
198	The Role of Deformation Modes on Ductility and Dynamic Recrystallization Behavior of AZ31 Mg Alloy at Low Temperatures. , 2014, , 155-160.		0

#	Article	IF	Citations
199	TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Materialia, 2013, 61, 6191-6206.	7.9	169
200	Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scripta Materialia, 2013, 69, 354-357.	5.2	74
201	Formability of Ultrafine-Grained Interstitial-Free Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4194-4206.	2.2	27
202	Magnetic field induced phase transformation in polycrystalline NiCoMnAl thin films. Applied Physics Letters, 2013, 103, 132404.	3.3	12
203	Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling. Materials Science & Department of TiNi based shape memory alloys Properties, Microstructure and Processing, 2013, 574, 9-16.	5.6	63
204	Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with $\hat{I}^3\hat{a}\in \hat{I}^2$ -Thermoelastic Martensitic Transformations. Russian Physics Journal, 2013, 56, 920-929.	0.4	14
205	The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 653-666.	5.6	82
206	Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 137-143.	5.6	25
207	Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels. Acta Materialia, 2013, 61, 2884-2894.	7.9	26
208	Surface hardening of biocompatible ultrafine-grained niobium zirconium alloy by two-stage oxidation treatment. Journal of Materials Science, 2013, 48, 4549-4556.	3.7	7
209	Shape memory effect and high-temperature superelasticity in high-strength single crystals. Journal of Alloys and Compounds, 2013, 577, S393-S398.	5.5	36
210	The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Materialia, 2013, 61, 3445-3455.	7.9	91
211	Low-Power Circuits and Energy Harvesting for Structural Health Monitoring of Bridges. IEEE Sensors Journal, 2013, 13, 709-722.	4.7	28
212	Tension - Compression Asymmetry in Co ₄₉ Ni ₂₁ Ga ₃₀ High-Temperature Shape Memory Alloy Single Crystals. Materials Science Forum, 2013, 738-739, 82-86.	0.3	9
213	Publisher's Note: Long-Term Oxidation of Ti ₂ AlC in Air and Water Vapor at 1000–1300°C Temperature Range [<i>)J. Electrochem. Soc.</i> , 159, C90 (2012)]. Journal of the Electrochemical Society, 2012, 159, S9-S9.	2.9	8
214	EFFECT OF AGING ON THE MARTENSITIC TRANSFORMATION CHARACTERISTICS OF A Ni -RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOY. Functional Materials Letters, 2012, 05, 1250038.	1.2	69
215	Design of shape memory alloy pipe couplers: modeling and experiments. , 2012, , .		10
216	CYCLIC DEFORMATION BEHAVIOR OF AGED FeNiCoAlTa SINGLE CRYSTALS. Functional Materials Letters, 2012, 05, 1250045.	1.2	30

#	Article	IF	CITATIONS
217	Design of a Multiple-Actuation Shape Memory Alloy Pipe Coupler: Material Development and Characterization. , 2012 , , .		1
218	Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Materialia, 2012, 60, 5670-5685.	7.9	75
219	Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys. Acta Materialia, 2012, 60, 6883-6891.	7.9	69
220	Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Materialia, 2012, 60, 6266-6277.	7.9	77
221	Stress-induced martensite to austenite phase transformation in Ni2MnGa magnetic shape memory alloys. Smart Materials and Structures, 2012, 21, 045011.	3.5	12
222	Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scripta Materialia, 2012, 67, 439-442.	5.2	136
223	Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy. Scripta Materialia, 2012, 67, 475-478.	5. 2	40
224	A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomaterialia, 2012, 8, 2863-2870.	8.3	92
225	Microstructural stability of ultrafine-grained niobium–zirconium alloy at elevated temperatures. Journal of Alloys and Compounds, 2012, 517, 61-68.	5.5	15
226	Thermodynamic analysis of two-stage heat treatment in TRIP steels. Acta Materialia, 2012, 60, 6120-6130.	7.9	22
227	Impact Toughness of Ultrafine-Grained Interstitial-Free Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4320-4330.	2.2	26
228	Superelasticity in CoNiGa single crystals containing \hat{l}^3 -phase particles. Russian Physics Journal, 2012, 54, 1295-1297.	0.4	1
229	High Strength and High Ductility of Ultrafine-Grained, Interstitial-Free Steel Produced by ECAE and Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1884-1894.	2.2	58
230	Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Materialia, 2012, 60, 2186-2195.	7.9	83
231	Multi-phase microstructure design of a low-alloy TRIP-assisted steel through a combined computational and experimental methodology. Acta Materialia, 2012, 60, 3022-3033.	7.9	71
232	The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Materialia, 2012, 60, 3545-3558.	7.9	28
233	Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication. Scripta Materialia, 2012, 67, 116-119.	5.2	17
234	Phase transformations in sputtered Ni–Mn–Ga magnetic shape memory alloy thin films. Thin Solid Films, 2012, 520, 3433-3439.	1.8	21

#	Article	IF	CITATIONS
235	Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5, 181-192.	3.1	58
236	Thermoelastic martensitic transformations in single crystals with disperse particles. Russian Physics Journal, 2012, 54, 937-950.	0.4	52
237	Effect of instruction based on conceptual change text on students' understanding of fluid pressure concept. International Journal of Innovation and Learning, 2011, 9, 21.	0.4	4
238	Metamagnetic Shape Memory Effect in Porous Ni ₄₃ Co ₇ Mn ₃₉ Sn ₁₁ Alloy Compacts Fabricated by Pressureless Sintering. Materials Transactions, 2011, 52, 2270-2273.	1.2	7
239	Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment. Surface and Coatings Technology, 2011, 205, S537-S542.	4.8	57
240	Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 117-127.	5 . 6	43
241	Grain refinement vs. crystallographic texture: Mechanical anisotropy in a magnesium alloy. Scripta Materialia, 2011, 64, 193-196.	5.2	94
242	Comparative analysis of the effects of severe plastic deformation and thermomechanical training on the functional stability of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scripta Materialia, 2011, 64, 315-318.	5 . 2	53
243	Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling. Scripta Materialia, 2011, 65, 123-126.	5. 2	44
244	Phase and morphology evolution in high-temperature Ti3SiC2–NiTi diffusion-bonded joints. Scripta Materialia, 2011, 65, 237-240.	5.2	32
245	Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scripta Materialia, 2011, 65, 903-906.	5.2	56
246	Orientation and temperature dependence of superelasticity caused by reversible î³-î±â€² martensitic transformations in FeNiCoAlTa single crystals. Technical Physics Letters, 2011, 37, 487-490.	0.7	23
247	Effect of internal oxidation on wear behavior of ultrafine-grained Nb–Zr. Acta Materialia, 2011, 59, 7683-7694.	7.9	29
248	Thermoelastic γâ€"α′-martensitic transformations in FeNiCoAlTa aging single crystals. Russian Physics Journal, 2011, 53, 1103-1106.	0.4	16
249	Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation. Acta Materialia, 2011, 59, 4747-4760.	7.9	70
250	Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Materialia, 2011, 59, 1168-1183.	7.9	61
251	Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6573-6583.	5. 6	57
252	Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7616-7627.	5 . 6	94

#	Article	IF	Citations
253	Severe plastic deformation of Ti74Nb26 shape memory alloys. Materials Science & Direction A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7628-7635.	5 . 6	21
254	Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium. Materials Science & Department of the Materials of Science & Department of the Materials of Science & Department of the Materials of Science & Department of the Materials of Science & Department of the Materials of Science & Department of Science	5.6	73
255	Effect of configurational order on the magnetic characteristics of Co-Ni-Ga ferromagnetic shape memory alloys. Physical Review B, $2011, 84, .$	3.2	29
256	Long-Term Oxidation of Ti ₂ AlC in Air and Water Vapor at 1000–1300°C Temperature Range. Journal of the Electrochemical Society, 2011, 159, C90-C96.	2.9	90
257	Shape Memory Response in Ni ₁₀ Mn ₃₃ Al _{17<td>SUB.&gt;</td><td>12</td>}	SU B.& gt;	12
258	Constitutive Modeling of Magneto-Thermo-Mechanical Response of Field-Induced Phase Transformations in NiMnColn Magnetic Shape Memory Alloys. , 2010, , .		0
259	High-temperature in-situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. International Journal of Materials Research, 2010, 101, 1-11.	0.3	41
260	Orientation dependence of superelasticity in ferromagnetic single crystals Co49Ni21Ga30. Physics of Metals and Metallography, 2010, 110, 78-90.	1.0	9
261	Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2485-2497.	2.2	70
262	On the fatigue crack growth–microstructure relationship in ultrafine-grained interstitial-free steel. Journal of Materials Science, 2010, 45, 4813-4821.	3.7	54
263	Using the education strategy with directing questions in the teaching period sample lesson: one dimensional motion. Procedia, Social and Behavioral Sciences, 2010, 2, 1083-1095.	0.5	1
264	High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scripta Materialia, 2010, 62, 368-371.	5.2	26
265	Superelastic memory effect in Ti74Nb26 shape memory alloy. Scripta Materialia, 2010, 63, 265-268.	5.2	9
266	Mechanical and shape memory properties of Ni43Co7Mn39Sn11 alloy compacts fabricated by pressureless sintering. Scripta Materialia, 2010, 63, 1236-1239.	5,2	16
267	Flow response of a severe plastically deformed two-phase zinc–aluminum alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2010, 527, 518-525.	5. 6	13
268	Effect of equal-channel angular extrusion on the mechanical and tribological properties of as-cast Zn–40Al–2Cu–2Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3480-3488.	5.6	30
269	Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy. Acta Materialia, 2010, 58, 2216-2224.	7.9	32
270	Role of severe plastic deformation on the cyclic reversibility of a Ti50.3Ni33.7Pd16 high temperature shape memory alloy. Acta Materialia, 2010, 58, 6411-6420.	7.9	75

#	Article	IF	Citations
271	Crystallization and high temperature shape memory behavior of sputter-deposited NiMnCoIn thin films. Applied Physics Letters, 2010, 96, .	3.3	17
272	Constitutive modeling of magneto-mechanical coupling response of magnetic field-induced phase transformations in NiMnCoIn magnetic shape memory alloys. Proceedings of SPIE, 2010, , .	0.8	0
273	Phase transformation and creep behavior in Ti 50 Pd 30 Ni 20 high temperature shape memory alloy in compression. , 2010, , .		0
274	High temperature shape memory alloys. International Materials Reviews, 2010, 55, 257-315.	19.3	762
275	Tension/compression asymmetry of functional properties in [001]-oriented ferromagnetic NiFeGaCo single crystals. Intermetallics, 2010, 18, 2458-2463.	3.9	55
276	Expanding the Repertoire of Shape Memory Alloys. Science, 2010, 327, 1468-1469.	12.6	67
277	Constitutive Modeling of Magnetic Field-Induced Phase Transformation in NiMnColn Magnetic Shape Memory Alloys. , 2009, , .		1
278	High school students' understanding of projectile motion concepts. Educational Research and Evaluation, 2009, 15, 203-222.	1.6	20
279	Multi-Scale Modeling of Texture Evolution in Beryllium and Zirconium during Equal Channel Angular Extrusion. Materials Science Forum, 2009, 633-634, 483-510.	0.3	3
280	Size Effect on the Phase Transformation of In-21at%Tl Nanowires. , 2009, , .		0
281	The role of grain size and distribution on the cyclic stability of titanium. Scripta Materialia, 2009, 60, 344-347.	5.2	29
282	Magnetic Fieldâ€Induced Phase Transformation in NiMnColn Magnetic Shapeâ€Memory Alloysâ€"A New Actuation Mechanism with Large Work Output. Advanced Functional Materials, 2009, 19, 983-998.	14.9	384
283	Plastic flow anisotropy of pure zirconium after severe plastic deformation at room temperature. Acta Materialia, 2009, 57, 4855-4865.	7.9	73
284	Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Materialia, 2009, 57, 6123-6134.	7.9	29
285	Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 97-104.	5.6	115
286	Microstructural Evolution and Mechanical Response of Equal-Channel Angular Extrusion-Processed Al-40Zn-2Cu Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2772-2783.	2.2	14
287	Cyclic stability of ultrafine-grained interstitial-free steel at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 160-162.	5.6	16
288	Monitoring the fatigue-induced damage evolution in ultrafine-grained interstitial-free steel utilizing digital image correlation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 225-234.	5.6	47

#	Article	IF	Citations
289	Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 78-81.	5.6	29
290	Effect of orientation on the high-temperature superelasticity in Co49Ni21Ga30 single crystals. Technical Physics Letters, 2009, 35, 186-189.	0.7	10
291	High-temperature superelasticity and the shape-memory effect in [001] Co-Ni-Al single crystals. Physics of Metals and Metallography, 2009, 107, 194-205.	1.0	8
292	MOLECULAR DYNAMICS STUDY OF THE COALESCENCE OF EQUAL AND UNEQUAL SIZED Cu NANOPARTICLES. International Journal of Modern Physics C, 2009, 20, 179-196.	1.7	20
293	High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russian Physics Journal, 2008, 51, 1016-1036.	0.4	49
294	Magneto-microstructural coupling during stress-induced phase transformation in Co49Ni21Ga30 ferromagnetic shape memory alloy single crystals. Journal of Materials Science, 2008, 43, 6890-6901.	3.7	12
295	Pseudoelasticity and Cyclic Stability in Co49Ni21Ga30 Shape-Memory Alloy Single Crystals at Ambient Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2026-2039.	2.2	58
296	DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni ₂ MnGa. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1026-1035.	1.8	79
297	Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Materialia, 2008, 56, 3630-3646.	7.9	187
298	The role of heat treatment on the cyclic stress–strain response of ultrafine-grained interstitial-free steel. International Journal of Fatigue, 2008, 30, 426-436.	5.7	46
299	Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Materials Science & Dependence and Processing, 2008, 481-482, 95-100.	5.6	20
300	Effect of severe plastic deformation on tensile properties and impact toughness of two-phase Zn–40Al alloy. Materials Science & Discretified and Processing, 2008, 490, 403-410.	5.6	45
301	Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals. Physics of Metals and Metallography, 2008, 106, 577-589.	1.0	70
302	On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scripta Materialia, 2008, 58, 307-310.	5.2	12
303	Improvement of the fatigue performance of an ultrafine-grained Nb–Zr alloy by nano-sized precipitates formed by internal oxidation. Scripta Materialia, 2008, 58, 571-574.	5.2	23
304	Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scripta Materialia, 2008, 58, 815-818.	5.2	47
305	The Effect of Texture on the Fatigue Properties of Ultrafine-Grained Interstitial-Free Steel. Materials Science Forum, 2008, 584-586, 864-869.	0.3	2
306	On the Cyclic Stability and Fatigue Performance of Ultrafine-Grained Interstitial-Free Steel under Mean Stress. Key Engineering Materials, 2008, 378-379, 39-52.	0.4	9

#	Article	IF	Citations
307	Design and application of a mechanical load frame for in situ investigation of ferromagnetic shape memory alloys by magnetic force microscopy. Review of Scientific Instruments, 2008, 79, 113701.	1.3	3
308	Influence of test procedures on the thermomechanical properties of a 55NiTi shape memory alloy. , 2008, , .		4
309	Low-cycle superelastic response of a titanium-niobium shape memory alloy. Proceedings of SPIE, 2008, ,	0.8	0
310	Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys. International Journal of Materials Research, 2007, 98, 332-338.	0.3	23
311	On the role of the cooling rate and crystallographic orientation on the shape memory properties of CoNiAl single crystals under compression. Smart Materials and Structures, 2007, 16, 1006-1015.	3.5	10
312	Stress–strain–temperature behaviour of [001] single crystals of Co49Ni21Ga30ferromagnetic shape memory alloy under compression. Philosophical Magazine, 2007, 87, 2313-2322.	1.6	25
313	Consolidation of blended powders by severe plastic deformation to form amorphous metal matrix composites. Journal of Non-Crystalline Solids, 2007, 353, 185-193.	3.1	23
314	Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Applied Physics Letters, 2007, 90, 172505.	3.3	155
315	On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Materialia, 2007, 55, 4253-4269.	7.9	134
316	Tension–compression asymmetry in severely deformed pure copper. Acta Materialia, 2007, 55, 4603-4613.	7.9	71
317	Microstructure–mechanical property relationships in ultrafine-grained NbZr. Acta Materialia, 2007, 55, 6596-6605.	7.9	52
318	Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. Journal of Nuclear Materials, 2007, 361, 298-305.	2.7	59
319	Characterization and modeling of the magnetic field-induced strain and work output in magnetic shape memory alloys. Journal of Magnetism and Magnetic Materials, 2007, 312, 164-175.	2.3	83
320	Orientation dependence of the shape memory effect and superelasticity in Co49Ni21Ga30 ferromagnetic single crystals. Doklady Physics, 2007, 52, 488-492.	0.7	0
321	High-temperature superelasticity during B2-L10 martensite transformations in Co40Ni33Al27 crystals. Technical Physics Letters, 2007, 33, 556-559.	0.7	1
322	Nanoparticle consolidation using equal channel angular extrusion at room temperature. Journal of Materials Science, 2007, 42, 1561-1576.	3.7	42
323	On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1946-1955.	2.2	49
324	On the fatigue behavior of ultrafine-grained interstitial-free steel. International Journal of Materials Research, 2006, 97, 1328-1336.	0.3	55

#	Article	IF	CITATIONS
325	Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Materialia, 2006, 54, 233-245.	7.9	293
326	Mechanical twinning and texture evolution in severely deformed Ti–6Al–4V at high temperatures. Acta Materialia, 2006, 54, 3755-3771.	7.9	169
327	Flow stress anisotropy and Bauschinger effect in ultrafine grained copper. Acta Materialia, 2006, 54, 5477-5488.	7.9	77
328	Thermally and stress-induced martensitic transformation in Co–Ni–Al ferromagnetic shape memory alloy single crystals. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 875-878.	5.6	17
329	Cyclic stress–strain response of ultrafine grained copper. International Journal of Fatigue, 2006, 28, 243-250.	5.7	92
330	Mechanical flow anisotropy in severely deformed pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 294-302.	5.6	81
331	A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scripta Materialia, 2006, 54, 2203-2208.	5.2	153
332	Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Materialia, 2006, 55, 403-406.	5.2	76
333	Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Materialia, 2006, 55, 663-666.	5.2	77
334	One-way shape memory effect due to stress-assisted magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Materialia, 2006, 55, 803-806.	5.2	19
335	Deformation twinning in difficult-to-work alloys during severe plastic deformation. Materials Science & Science and Processing, 2005, 410-411, 243-247.	5.6	64
336	Cyclic stress–strain response and low-cycle fatigue damage in ultrafine grained copper. Materials Science & Science & Properties, Microstructure and Processing, 2005, 410-411, 457-461.	5.6	39
337	Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Philosophical Magazine, 2005, 85, 1729-1745.	1.6	107
338	Shape memory effect and superelasticity in single-phase nickel titanium single crystals. European Physical Journal Special Topics, 2004, 115, 175-183.	0.2	1
339	Plastic deformation of nitrogen-containing austenitic stainless steel single crystals with low stacking fault energy. European Physical Journal Special Topics, 2004, 115, 223-230.	0.2	5
340	The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals. European Physical Journal Special Topics, 2004, 115, 243-250.	0.2	1
341	The shape memory effect and superelasticity in Ti-Ni single crystals with one variant of dispersed particles. European Physical Journal Special Topics, 2004, 115, 21-28.	0.2	2
342	Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. Journal of Materials Research, 2004, 19, 2268-2278.	2.6	47

#	Article	IF	CITATIONS
343	Compressive response of a single crystalline CoNiAl shape memory alloy. Scripta Materialia, 2004, 51, 261-266.	5.2	74
344	Orientational dependence of shape memory effects and superelasticity in CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi single crystals. Russian Physics Journal, 2004, 47, 893-911.	0.4	24
345	The effect of temperature and extrusion speed on the consolidation of zirconium-based metallic glass powder using equal-channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 247-256.	2.2	36
346	Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2935-2949.	2.2	103
347	Consolidation of Cu and Amorphous ZR-Based Powders by Severe Plastic Deformation., 2004,, 91-100.		1
348	The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2527-2539.	2.2	78
349	The role of nitrogen on the deformation response of hadfield steel single crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 1821-1831.	2.2	33
350	Detwinning in NiTi alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 5-13.	2.2	95
351	Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy. Scripta Materialia, 2003, 49, 831-836.	5. 2	88
352	Microstructure and mechanical properties of severely deformed powder processed Ti–6Al–4V using equal channel angular extrusion. Scripta Materialia, 2003, 49, 1021-1027.	5.2	55
353	Features of thermoelastic martensitic transformations in [001] titanium-nickel single crystals. Doklady Physics, 2003, 48, 34-37.	0.7	2
354	Consolidation of amorphous copper based powder by equal channel angular extrusion. Journal of Non-Crystalline Solids, 2003, 317, 144-151.	3.1	84
355	The shape memory effect and superelasticity in nickel-titanium single crystals aged under applied stress. European Physical Journal Special Topics, 2003, 112, 799-802.	0.2	5
356	Progress in Consolidation of Amorphous Zr-based Powder into Bulk Metallic Glass. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	2
357	The deformation of low-stacking-fault-energy austenitic steels. Jom, 2002, 54, 31-37.	1.9	73
358	Deformation mechanisms and strain hardening of Hadfield-steel single crystals alloyed with aluminum. Doklady Physics, 2002, 47, 515-517.	0.7	6
359	Observations on Stress-Induced Transformations in NiTi Alloys. Solid Mechanics and Its Applications, 2002, , 103-109.	0.2	4
360	Deformation of NiTiCu shape memory single crystals in compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 477-489.	2.2	36

#	Article	IF	Citations
361	The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 695-706.	2.2	5
362	The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 695-706.	2.2	79
363	Strain–temperature behavior of NiTiCu shape memory single crystals. Acta Materialia, 2001, 49, 3621-3634.	7.9	52
364	Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen. Acta Materialia, 2001, 49, 3919-3933.	7.9	196
365	Cyclic deformation behavior of single crystal NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 314, 67-74.	5.6	102
366	On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 85-92.	5.6	118
367	Shape memory and pseudoelastic behavior of 51.5%Ni–Ti single crystals in solutionized and overaged state. Acta Materialia, 2001, 49, 3609-3620.	7.9	140
368	Extrinsic stacking faults and twinning in hadfield manganese steel single crystals. Scripta Materialia, 2001, 44, 337-343.	5.2	94
369	Deformation of FeNiCoTi shape memory single crystals. Scripta Materialia, 2001, 44, 779-784.	5.2	70
370	Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip. Acta Materialia, 2000, 48, 2031-2047.	7.9	254
371	Twinning in Gadfield-steel single crystals. Doklady Physics, 2000, 45, 101-104.	0.7	3
372	Compressive response of NiTi single crystals. Acta Materialia, 2000, 48, 3311-3326.	7.9	249
373	Deformation of single crystal Hadfield steel by twinning and slip. Acta Materialia, 2000, 48, 1345-1359.	7.9	364
374	Constriction energy in the presence of a solute field. Journal of Applied Physics, 2000, 87, 2194-2203.	2.5	18
375	On The Deformation Mechanisms in Single Crystal Hadfield Manganese Steels. Scripta Materialia, 1998, 38, 1009-1015.	5.2	49
376	The role of coherent precipitates in martensitic transformations in single crystal and polycrystalline Ti-50.8at%Ni. Scripta Materialia, 1998, 39, 699-705.	5.2	43
377	Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 427-437.	2.2	12
378	Prediction of Flow Stress Anisotropy and Tension Compression Asymmetry of Hot Rolled AZ31B Mg Alloy. Advanced Materials Research, 0, 911, 178-184.	0.3	1

#	Article	IF	CITATIONS
379	Effect of Tensile Twinning on Low Temperature Shear Formability of Mg-3Al-1Zn Alloy. Advanced Materials Research, 0, 922, 108-113.	0.3	1
380	Micromechanical Modeling of Precipitation Hardened NiTiHf. Materials Science Forum, 0, 915, 147-156.	0.3	0
381	A Differential Evaporation Model to Predict Chemistry Change of Additively Manufactured Metals. SSRN Electronic Journal, 0, , .	0.4	O
382	<i>In-Situ</i> Characterization of Stress-Induced Martensite and Related Magnetic Domain Structure in Ni-Fe-Ga Ferromagnetic Shape Memory Alloy Single Crystals., 0,, 246-254.		0