
## Juan Antelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991049/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                              | IF  | CITATIONS |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Use of combined tools for effectiveness evaluation of tailings rehabilitated with designed Technosol.<br>Environmental Geochemistry and Health, 2022, 44, 1857-1873. | 3.4 | 6         |
| 2 | Competitive Arsenate and Phosphate Adsorption on Ferrihydrite as Described by the CD-MUSIC Model.<br>ACS Earth and Space Chemistry, 2022, 6, 1397-1406.              | 2.7 | 10        |
| 3 | Estimation of phosphate extractability in flooded soils: Effect of solid-solution ratio and bicarbonate concentration. Chemosphere, 2022, 303, 135188.               | 8.2 | 1         |

Thermal Transformation of Natural Schwertmannite in the Presence of Chromium. Minerals (Basel,) Tj ETQq000 rgBT/Overlock 10 Tf 50 000

| 5  | Distinctive Features of Composts of Different Origin: A Thorough Examination of the Characterization Results. Sustainability, 2022, 14, 7449.                                                          | 3.2 | 3  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 6  | Stability of naturally occurring AMD–schwertmannite in the presence of arsenic and reducing agents. Journal of Geochemical Exploration, 2021, 220, 106677.                                             | 3.2 | 10 |
| 7  | From sinks to sources: The role of Fe oxyhydroxide transformations on phosphorus dynamics in estuarine soils. Journal of Environmental Management, 2021, 278, 111575.                                  | 7.8 | 30 |
| 8  | Factors that affect physicochemical and acid-base properties of compost and vermicompost and its potential use as a soil amendment. Journal of Environmental Management, 2021, 300, 113702.            | 7.8 | 13 |
| 9  | Modeling the effects of humic acid and anoxic condition on phosphate adsorption onto goethite.<br>Chemosphere, 2020, 253, 126691.                                                                      | 8.2 | 18 |
| 10 | Phosphate adsorption on an industrial residue and subsequent use as an amendment for phosphorous deficient soils. Journal of Cleaner Production, 2019, 230, 844-853.                                   | 9.3 | 11 |
| 11 | Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation. Environmental Science and Pollution Research, 2019, 26, 11605-11617.                       | 5.3 | 17 |
| 12 | In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review. Applied Geochemistry, 2019, 100, 335-351. | 3.0 | 85 |
| 13 | A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organo-mineral composites.<br>Chemical Geology, 2018, 479, 22-35.                                                                   | 3.3 | 39 |
| 14 | Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Applied Geochemistry, 2018, 89, 129-137.                                                     | 3.0 | 41 |
| 15 | Immobilization of phosphate by a Technosol spolic silandic: kinetics, equilibrium and dependency on environmental variables. Journal of Soils and Sediments, 2018, 18, 2914-2923.                      | 3.0 | 3  |
| 16 | 3D Printed Composites of Copper–Aluminum Oxides. 3D Printing and Additive Manufacturing, 2018, 5,<br>46-52.                                                                                            | 2.9 | 7  |
| 17 | Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides. Chemical Geology, 2018, 493, 189-198.                                                                                           | 3.3 | 53 |
| 18 | Effects of natural organic matter on the binding of arsenate and copper onto goethite. Chemical Geology, 2017, 459, 119-128.                                                                           | 3.3 | 39 |

Juan Antelo

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Use of Waste-Derived Biochar to Remove Copper from Aqueous Solution in a Continuous-Flow System.<br>Industrial & Engineering Chemistry Research, 2017, 56, 12755-12762.                          | 3.7  | 9         |
| 20 | Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresource Technology, 2016, 212, 199-206.                                                                     | 9.6  | 78        |
| 21 | Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chemical Geology, 2015, 410, 53-62.                                                   | 3.3  | 107       |
| 22 | Surface Complexation Modelling of Arsenic and Copper Immobilization by Iron Oxide Precipitates<br>Derived from Acid Mine Drainage. Boletin De La Sociedad Geologica Mexicana, 2015, 67, 493-508. | 0.3  | 10        |
| 23 | Modeling oxyanion adsorption on ferralic soil, part 1: Parameter validation with phosphate ion.<br>Environmental Toxicology and Chemistry, 2014, 33, 2208-2216.                                  | 4.3  | 19        |
| 24 | Modeling oxyanion adsorption on ferralic soil, part 2: Chromate, selenate, molybdate, and arsenate adsorption. Environmental Toxicology and Chemistry, 2014, 33, 2217-2224.                      | 4.3  | 12        |
| 25 | Effect of organic matter and pH on the adsorption of metalaxyl and penconazole by soils. Journal of<br>Hazardous Materials, 2013, 260, 627-633.                                                  | 12.4 | 43        |
| 26 | Cu(II) incorporation to schwertmannite: Effect on stability and reactivity under AMD conditions.<br>Geochimica Et Cosmochimica Acta, 2013, 119, 149-163.                                         | 3.9  | 51        |
| 27 | Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange. Journal of Colloid and Interface Science, 2012, 386, 338-343.                    | 9.4  | 113       |
| 28 | Adsorption of paraquat on soil organic matter: Effect of exchangeable cations and dissolved organic carbon. Journal of Hazardous Materials, 2012, 235-236, 218-223.                              | 12.4 | 24        |
| 29 | Study of the acidâ€base properties of a peat soil and its humin and humic acid fractions. European<br>Journal of Soil Science, 2012, 63, 487-494.                                                | 3.9  | 9         |
| 30 | Proton binding on untreated peat and acid-washed peat. Geoderma, 2011, 164, 249-253.                                                                                                             | 5.1  | 9         |
| 31 | Adsorption of paraquat on goethite and humic acid-coated goethite. Journal of Hazardous Materials, 2010, 183, 664-668.                                                                           | 12.4 | 43        |
| 32 | Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model. Journal of Colloid and<br>Interface Science, 2010, 347, 112-119.                                                    | 9.4  | 158       |
| 33 | Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples. Geochimica Et Cosmochimica Acta, 2010, 74, 41-58.                        | 3.9  | 136       |
| 34 | Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate. Geochimica Et Cosmochimica Acta, 2010, 74, 59-69.                      | 3.9  | 68        |
| 35 | Adsorption of MCPA on goethite and humic acid-coated goethite. Chemosphere, 2010, 78, 1403-1408.                                                                                                 | 8.2  | 56        |
| 36 | Influence of pH on copper, lead and cadmium binding by an ombrotrophic peat. European Journal of<br>Soil Science, 2009, 60, 377-385.                                                             | 3.9  | 22        |

Juan Antelo

0

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids.<br>Chemosphere, 2009, 76, 107-113.                                                                                                                         | 8.2 | 40        |
| 38 | Copper adsorption on humic acid coated gibbsite: comparison with single sorbent systems.<br>Environmental Chemistry, 2009, 6, 535.                                                                                                                             | 1.5 | 6         |
| 39 | Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science, 2008, 59, 892-899.                                                                            | 3.9 | 29        |
| 40 | Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma, 2007, 138, 12-19.                                                                                                                         | 5.1 | 182       |
| 41 | Analysis of the variable charge of two organic soils by means of the NICAâ€Donnan model. European<br>Journal of Soil Science, 2007, 58, 1358-1363.                                                                                                             | 3.9 | 8         |
| 42 | Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements.<br>Journal of Colloid and Interface Science, 2006, 300, 511-518.                                                                                             | 9.4 | 226       |
| 43 | Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of Colloid and Interface Science, 2005, 285, 476-486.                                                                                    | 9.4 | 452       |
| 44 | Study of the acid–base properties of fulvic acid-like substances extracted from senescent leaves of eucalyptus and oak. Analytical and Bioanalytical Chemistry, 2003, 375, 523-526.                                                                            | 3.7 | 3         |
| 45 | Copper fractionation with dissolved organic matter in natural waters and wastewater—a mixed<br>micelle mediated methodology (cloud point extraction) employing flame atomic absorption<br>spectrometry. Journal of Environmental Monitoring, 2002, 4, 505-510. | 2.1 | 29        |
|    |                                                                                                                                                                                                                                                                |     |           |

46 Interactions Between Ionic Pesticides and Model Systems for Soil Fractions. , 0, , .