Stefan Maus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6991004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Improvement in Wellbore Position Accuracy: Ultra-Extended-Reach Drilling in Far Eastern Russia. , 2018, , .		5
2	A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements. Journal of Geophysical Research: Space Physics, 2017, 122, 8733-8754.	2.4	5
3	Modelâ€observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere. Geophysical Research Letters, 2017, 44, 7634-7642.	4.0	3
4	The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE, 2016, 11, e0150883.	2.5	41
5	Fast equatorial waves propagating at the top of the Earth's core. Geophysical Research Letters, 2015, 42, 3321-3329.	4.0	63
6	International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, 2015, 67, .	2.5	1,015
7	NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field. Earth, Planets and Space, 2015, 67, .	2.5	28
8	Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. Journal of Geophysical Research: Solid Earth, 2014, 119, 1531-1543.	3.4	92
9	Geomagnetic main field modeling with DMSP. Journal of Geophysical Research: Space Physics, 2014, 119, 4010-4025.	2.4	15
10	Effective Monitoring of Auroral Electrojet Disturbances to Enable Accurate Wellbore Placement in the Arctic. , 2014, , .		6
11	Marine Magnetic Surveying and Disturbance Field Monitoring by Autonomous Marine Vehicles. , 2014, , .		3
12	Space Weather opportunities from the Swarm mission including near real time applications. Earth, Planets and Space, 2013, 65, 1375-1383.	2.5	20
13	The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth, Planets and Space, 2013, 65, 1189-1200.	2.5	222
14	Swarm SCARF equatorial electric field inversion chain. Earth, Planets and Space, 2013, 65, 1309-1317.	2.5	39
15	Improved Geomagnetic Referencing in the Arctic Environment (Russian). , 2013, , .		5
16	Improved Geomagnetic Referencing in the Arctic Environment. , 2013, , .		8
17	Successful Application of Geomagnetic Referencing for Accurate Wellbore Positioning in a Deepwater Project Offshore Brazil. , 2012, , .		10
18	Addressing Wellbore Position Challenges in Ultra-Extended-Reach Drilling in Russia's Far East (Russian). , 2012, , .		2

STEFAN MAUS

#	Article	IF	CITATIONS
19	Addressing Wellbore Position Challenges in Ultra-Extended-Reach Drilling in Russia's Far East. , 2012, ,		9
20	High Definition Geomagnetic Models: A New Perspective for Improved Wellbore Positioning. , 2012, , .		13
21	On the coherence between US and Australian magnetic compilations and CHAMP satellite magnetic measurements. , 2012, , .		0
22	Chapter 3 Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geological Society Memoir, 2011, 35, 39-48.	1.7	92
23	Observation of Magnetic Fields Generated by Tsunamis. Eos, 2011, 92, 13-14.	0.1	64
24	C/NOFS measurements of magnetic perturbations in the low-latitude ionosphere during magnetic storms. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
25	Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic field measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 319-326.	1.6	29
26	International Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International, 2010, 183, 1216-1230.	2.4	907
27	NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model. Earth, Planets and Space, 2010, 62, 729-735.	2.5	84
28	On the possibility of extending the IGRF predictive secular variation model to a higher SH degree. Earth, Planets and Space, 2010, 62, 815-820.	2.5	5
29	ICRF candidate models at times of rapid changes in core field acceleration. Earth, Planets and Space, 2010, 62, 753-763.	2.5	13
30	Solar cycle dependence of quiet-time magnetospheric currents and a model of their near-Earth magnetic fields. Earth, Planets and Space, 2010, 62, 843-848.	2.5	61
31	Relationship between the ionospheric eastward electric field and the equatorial electrojet. Geophysical Research Letters, 2010, 37, .	4.0	30
32	Reply to comment by V. Lesur et al. on "Can coreâ€surface flow models be used to improve the forecast of the Earth's main magnetic field― Journal of Geophysical Research, 2009, 114, .	3.3	4
33	Earth Magnetic Anomaly Grid Released. Eos, 2009, 90, 239-239.	0.1	4
34	The geomagnetic power spectrum. Geophysical Journal International, 2008, 174, 135-142.	2.4	53
35	On the applicability of the frozen flux approximation in core flow modelling as a function of temporal frequency and spatial degree. Geophysical Journal International, 2008, 175, 853-856.	2.4	4
36	Can coreâ€surface flow models be used to improve the forecast of the Earth's main magnetic field?. Journal of Geophysical Research, 2008, 113, .	3.3	39

STEFAN MAUS

#	Article	IF	CITATIONS
37	Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements. Geophysical Research Letters, 2008, 35, .	4.0	19
38	EMAG3: A 3â€arcâ€minute resolution global magnetic anomaly grid compiled from satellite, airborne and marine magnetic data. , 2008, , .		3
39	Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets. Earth and Planetary Science Letters, 2007, 260, 56-71.	4.4	53
40	Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	89
41	Electric fields and zonal winds in the equatorial ionosphere inferred from CHAMP satellite magnetic measurements. Geophysical Research Letters, 2007, 34, .	4.0	12
42	Spatioâ€ŧemporal characterization of the equatorial electrojet from CHAMP, Ã~rsted, and SAC satellite magnetic measurements. Journal of Geophysical Research, 2007, 112, .	3.3	113
43	Ocean, Electromagnetic Effects. , 2007, , 740-742.		3
44	Champ. , 2007, , 59-60.		11
45	A global lithospheric magnetic field model with reduced noise level in the Polar Regions. Geophysical Research Letters, 2006, 33, .	4.0	29
46	Direct observation of theFregion dynamo currents and the spatial structure of the EEJ by CHAMP. Geophysical Research Letters, 2006, 33, .	4.0	57
47	The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth's magnetic field using synthetic data. Earth, Planets and Space, 2006, 58, 359-370.	2.5	62
48	Introducing POMME, the POtsdam Magnetic Model of the Earth. , 2005, , 293-298.		35
49	Interpretation of CHAMP Crustal Field Anomaly Maps Using Geographical Information System (GIS) Technique. , 2005, , 249-254.		8
50	Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophysical Journal International, 2005, 162, 755-763.	2.4	81
51	Wavelet Analysis of CHAMP Flux Gate Magnetometer Data. , 2005, , 347-352.		15
52	International Geomagnetic Reference Field—the tenth generation. Earth, Planets and Space, 2005, 57, 1135-1140.	2.5	118
53	NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field. Earth, Planets and Space, 2005, 57, 1151-1156.	2.5	26
54	Evaluation of candidate geomagnetic field models for the 10th generation of IGRF. Earth, Planets and Space, 2005, 57, 1173-1181.	2.5	23

STEFAN MAUS

#	Article	IF	CITATIONS
55	Why no anomaly is visible over most of the continent–ocean boundary in the global crustal magnetic field. Physics of the Earth and Planetary Interiors, 2005, 149, 321-333.	1.9	32
56	10th Generation International Geomagnetic Reference Field. Eos, 2005, 86, 159.	0.1	22
57	Comment on "Error made in reports of main field decay― Eos, 2004, 85, 350.	0.1	Ο
58	Local time effects in satellite estimates of electromagnetic induction transfer functions. Geophysical Research Letters, 2004, 31, .	4.0	15
59	Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	53
60	The 9th-Generation International Geomagnetic Reference Field. Geophysical Journal International, 2003, 155, 1051-1056.	2.4	47
61	CHAMP satellite and terrestrial magnetic data help define the tectonic model for South America and resolve the lingering problem of the pre-break-up fit of the South Atlantic Ocean. The Leading Edge, 2003, 22, 779-783.	0.7	45
62	Satellite Observations of Magnetic Fields Due to Ocean Tidal Flow. Science, 2003, 299, 239-241.	12.6	155
63	A Comparison of Global Lithospheric Field Models Derived from Satellite Magnetic Data. , 2003, , 261-268.		5
64	Mapping the Lithospheric Magnetic Field from CHAMP Scalar and Vector Magnetic Data. , 2003, , 269-274.		1
65	Geological implications of continental magnetic anomalies derived from new CHAMP satellite data. , 2003, , .		0
66	Is there an observable lack of reciprocity inPKP(DF) traveltimes?. Geophysical Journal International, 2000, 143, 274-277.	2.4	1
67	Variogram analysis of helicopter magnetic data to identify paleochannels of the Omaruru River, Namibia. Geophysics, 1999, 64, 785-794.	2.6	13
68	Variogram analysis of magnetic and gravity data. Geophysics, 1999, 64, 776-784.	2.6	18
69	Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms. Geophysical Journal International, 1998, 134, 243-253.	2.4	43
70	Satelliteâ€derived gravity: Where we are and what's next. The Leading Edge, 1998, 17, 77-79.	0.7	12
71	Curie-temperature depth estimation using a self-similar magnetization model. Geophysical Journal International, 1997, 129, 163-168.	2.4	138
72	Depth estimation from the scaling power spectrum of potential fields?. Geophysical Journal International, 1996, 124, 113-120.	2.4	146

#	Article	IF	CITATIONS
73	Variogram analysis of magnetic data to identify paleochannels of the Omaruru River in Namibia. , 1996, , .		1
74	Scaling statistical analysis of magnetic and gravity data. , 1996, , .		1
75	Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research, 1995, 100, 12605-12616.	3.3	111