Lincoln R Potter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699086/publications.pdf Version: 2024-02-01

LINCOLN P POTTER

#	Article	IF	CITATIONS
1	Guanylyl cyclaseâ€A phosphorylation decreases cardiac hypertrophy and improves systolic function in male, but not female, mice. FASEB Journal, 2022, 36, e22069.	0.2	6
2	Signals Natriuretic Peptides, Their Receptors and Therapeutic Applications. , 2021, , 95-98.		0
3	Cyclic AMP links luteinizing hormone signaling to dephosphorylation and inactivation of the NPR2 guanylyl cyclase in ovarian folliclesâ€. Biology of Reproduction, 2021, 104, 939-941.	1.2	5
4	Prevention of guanylyl cyclase–B dephosphorylation rescues achondroplastic dwarfism. JCI Insight, 2021, 6, .	2.3	12
5	Male mice with elevated C-type natriuretic peptide-dependent guanylyl cyclase-B activity have increased osteoblasts, bone mass and bone strength. Bone, 2020, 135, 115320.	1.4	17
6	The pseudokinase domains of guanylyl cyclase–A and –B allosterically increase the affinity of their catalytic domains for substrate. Science Signaling, 2019, 12, .	1.6	12
7	Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons. Journal of Neuroscience, 2018, 38, 9768-9780.	1.7	14
8	A Glutamate-Substituted Mutant Mimics the Phosphorylated and Active Form of Guanylyl Cyclase-A. Molecular Pharmacology, 2017, 92, 67-74.	1.0	9
9	Skeletal overgrowth-causing mutations mimic an allosterically activated conformation of guanylyl cyclase-B that is inhibited by 2,4,6,-trinitrophenyl ATP. Journal of Biological Chemistry, 2017, 292, 10220-10229.	1.6	4
10	Dephosphorylation is the mechanism of fibroblast growth factor inhibition of guanylyl cyclase-B. Cellular Signalling, 2017, 40, 222-229.	1.7	21
11	Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor. ELife, 2017, 6, .	2.8	27
12	Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone. Developmental Biology, 2016, 409, 194-201.	0.9	49
13	Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism. Journal of Biological Chemistry, 2016, 291, 11385-11393.	1.6	19
14	Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase regulates oocyte meiotic resumption. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
15	Catalytically active guanylyl cyclase-B requires glycosylation and mutations that inhibit this process cause dwarfism. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
16	Mutation of a conserved lysine in the kinase homology domain reduces the natriuretic peptide-dependent activity and phosphorylation of guanylyl cyclase-A. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
17	Heterozygous Mutations in Natriuretic Peptide Receptor-B (<i>NPR2</i>) Gene as a Cause of Short Stature. Human Mutation, 2015, 36, 474-481.	1.1	86
18	Regulation of intraocular pressure by soluble and membrane guanylate cyclases and their role in glaucoma. Frontiers in Molecular Neuroscience, 2014, 7, 38.	1.4	43

LINCOLN R POTTER

#	Article	IF	CITATIONS
19	Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development (Cambridge), 2014, 141, 3594-3604.	1.2	92
20	A human skeletal overgrowth mutation increases maximal velocity and blocks desensitization of guanylyl cyclase-B. Bone, 2013, 56, 375-382.	1.4	17
21	A twenty year journey to understand how ATP activates guanylyl cyclase A and B. BMC Pharmacology & Toxicology, 2013, 14, .	1.0	0
22	Cyclic GMP-mediated intercellular communication in mammalian ovarian follicles. BMC Pharmacology & amp; Toxicology, 2013, 14, .	1.0	0
23	Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. Journal of Molecular and Cellular Cardiology, 2012, 52, 727-732.	0.9	26
24	Guanylyl Cyclases A and B Are Asymmetric Dimers That Are Allosterically Activated by ATP Binding to the Catalytic Domain. Science Signaling, 2012, 5, ra65.	1.6	25
25	Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Developmental Biology, 2012, 366, 308-316.	0.9	128
26	A Functional Screen Provides Evidence for a Conserved, Regulatory, Juxtamembrane Phosphorylation Site in Guanylyl Cyclase A and B. PLoS ONE, 2012, 7, e36747.	1.1	29
27	Insulin-degrading Enzyme Modulates the Natriuretic Peptide-mediated Signaling Response. Journal of Biological Chemistry, 2011, 286, 4670-4679.	1.6	65
28	Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. Journal of Molecular and Cellular Cardiology, 2011, 51, 67-71.	0.9	56
29	The indolocarbazole, Gö6976, inhibits guanylyl cyclaseâ€A and â€B. British Journal of Pharmacology, 2011, 164, 499-506.	2.7	7
30	Natriuretic peptide metabolism, clearance and degradation. FEBS Journal, 2011, 278, 1808-1817.	2.2	285
31	Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. , 2011, 130, 71-82.		123
32	Guanylyl cyclase structure, function and regulation. Cellular Signalling, 2011, 23, 1921-1926.	1.7	237
33	ProBNP1–108 Is Resistant to Degradation and Activates Guanylyl Cyclase-A with Reduced Potency. Clinical Chemistry, 2011, 57, 1272-1278.	1.5	32
34	ATP Potentiates Competitive Inhibition of Guanylyl Cyclase A and B by the Staurosporine Analog, Gö6976. Journal of Biological Chemistry, 2011, 286, 33841-33844.	1.6	11
35	Antibody Tracking Demonstrates Cell Type-Specific and Ligand-Independent Internalization of Guanylyl Cyclase A and Natriuretic Peptide Receptor C. Molecular Pharmacology, 2011, 80, 155-162.	1.0	12
36	The indolocarbazole, Gö6976, is a competitive inhibitor of guanylyl cyclaseâ€A and â€B. FASEB Journal, 2011, 25, .	0.2	0

LINCOLN R POTTER

#	Article	IF	CITATIONS
37	Human B-type natriuretic peptide is not degraded by meprin A. Biochemical Pharmacology, 2010, 80, 1007-1011.	2.0	24
38	Guanylyl Cyclases. , 2010, , 1399-1407.		1
39	Arg13 of B-Type Natriuretic Peptide Reciprocally Modulates Binding to Guanylyl Cyclase but Not Clearance Receptors. Molecular Pharmacology, 2010, 78, 431-435.	1.0	9
40	Prolonged Atrial Natriuretic Peptide Exposure Stimulates Guanylyl Cyclase-A Degradation. Endocrinology, 2010, 151, 2769-2776.	1.4	19
41	Mass Spectrometric Identification of Phosphorylation Sites in Guanylyl Cyclase A and B. Biochemistry, 2010, 49, 10137-10145.	1.2	32
42	Inactivation of Natriuretic Peptides by Human Insulinâ€Degrading Enzyme Reveals New Insights on Substrate Recognition and Selectivity. FASEB Journal, 2010, 24, 681.13.	0.2	0
43	A Familial Mutation Renders Atrial Natriuretic Peptide Resistant to Proteolytic Degradation. Journal of Biological Chemistry, 2009, 284, 19196-19202.	1.6	60
44	Natriuretic Peptides: Their Structures, Receptors, Physiologic Functions and Therapeutic Applications. Handbook of Experimental Pharmacology, 2009, , 341-366.	0.9	444
45	Reduced ability of C-type natriuretic peptide (CNP) to activate natriuretic peptide receptor B (NPR-B) causes dwarfism in Ibabâ^'/â^' mice. Peptides, 2008, 29, 1575-1581.	1.2	17
46	Novel Bifunctional Natriuretic Peptides as Potential Therapeutics. Journal of Biological Chemistry, 2008, 283, 35003-35009.	1.6	76
47	Renal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations. American Journal of Physiology - Renal Physiology, 2007, 292, F1636-F1644.	1.3	51
48	Differential Regulation of Membrane Guanylyl Cyclases in Congestive Heart Failure: Natriuretic Peptide Receptor (NPR)-B, Not NPR-A, Is the Predominant Natriuretic Peptide Receptor in the Failing Heart. Endocrinology, 2007, 148, 3518-3522.	1.4	103
49	Adenine nucleotides decrease the apparent <i>K</i> _m of endogenous natriuretic peptide receptors for GTP. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1756-E1763.	1.8	23
50	A Sensitive Method for Determining the Phosphorylation Status of Natriuretic Peptide Receptors: cGK-Iα Does Not Regulate NPR-A. Biochemistry, 2006, 45, 1295-1303.	1.2	28
51	Natriuretic Peptides, Their Receptors, and Cyclic Guanosine Monophosphate-Dependent Signaling Functions. Endocrine Reviews, 2006, 27, 47-72.	8.9	865
52	Heterozygous Mutations in Natriuretic Peptide Receptor-B (NPR2) Are Associated with Short Stature. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1229-1232.	1.8	149
53	ATPâ€Independent Activation of Natriuretic Peptide Receptors. FASEB Journal, 2006, 20, A972.	0.2	0
54	Differential regulation of NPR-B/GC-B by protein kinase c and calcium. Biochemical Pharmacology, 2005, 70, 686-694.	2.0	31

LINCOLN R POTTER

#	Article	IF	CITATIONS
55	Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Frontiers in Bioscience - Landmark, 2005, 10, 1205.	3.0	60
56	ATP-independent Activation of Natriuretic Peptide Receptors. Journal of Biological Chemistry, 2005, 280, 26928-26932.	1.6	38
57	Down-Regulation Does Not Mediate Natriuretic Peptide-Dependent Desensitization of Natriuretic Peptide Receptor (NPR)-A or NPR-B: Guanylyl Cyclase-Linked Natriuretic Peptide Receptors Do Not Internalize. Molecular Pharmacology, 2005, 67, 174-183.	1.0	38
58	"Corination―of the proANP converting enzyme. Cell Metabolism, 2005, 1, 88-90.	7.2	8
59	Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptors. Peptides, 2005, 26, 1001-1008.	1.2	20
60	Sphingosine-1-Phosphate Inhibits C-Type Natriuretic Peptide Activation of Guanylyl Cyclase B (GC-B/NPR-B). Hypertension, 2004, 43, 1103-1109.	1.3	32
61	Spatiotemporal Regulation of the Two Atrial Natriuretic Peptide Receptors in Testis. Endocrinology, 2004, 145, 1392-1401.	1.4	27
62	Calcium-dependent Dephosphorylation Mediates the Hyperosmotic and Lysophosphatidic Acid-dependent Inhibition of Natriuretic Peptide Receptor-B/Guanylyl Cyclase-B. Journal of Biological Chemistry, 2004, 279, 48513-48519.	1.6	31
63	Lysophosphatidic Acid Inhibits C-Type Natriuretic Peptide Activation of Guanylyl Cyclase-B. Endocrinology, 2003, 144, 240-246.	1.4	44
64	Vasopressin-dependent Inhibition of the C-type Natriuretic Peptide Receptor, NPR-B/GC-B, Requires Elevated Intracellular Calcium Concentrations. Journal of Biological Chemistry, 2002, 277, 42423-42430.	1.6	54
65	The Atrial Natriuretic Peptide Receptor (NPR-A/GC-A) Is Dephosphorylated by Distinct Microcystin-sensitive and Magnesium-dependent Protein Phosphatases. Journal of Biological Chemistry, 2002, 277, 16041-16047.	1.6	40
66	Guanylyl Cyclase-linked Natriuretic Peptide Receptors: Structure and Regulation. Journal of Biological Chemistry, 2001, 276, 6057-6060.	1.6	197
67	Activation of Protein Kinase C Stimulates the Dephosphorylation of Natriuretic Peptide Receptor-B at a Single Serine Residue. Journal of Biological Chemistry, 2000, 275, 31099-31106.	1.6	47
68	A Constitutively "Phosphorylated―Guanylyl Cyclase-linked Atrial Natriuretic Peptide Receptor Mutant Is Resistant to Desensitization. Molecular Biology of the Cell, 1999, 10, 1811-1820.	0.9	68
69	Identification and Characterization of the Phosphorylation Sites of the Guanylyl Cyclase-Linked Natriuretic Peptide Receptors A and B. Methods, 1999, 19, 506-520.	1.9	32
70	Phosphorylation-Dependent Regulation of the Guanylyl Cyclase-Linked Natriuretic Peptide Receptor B:Â Dephosphorylation Is a Mechanism of Desensitizationâ€. Biochemistry, 1998, 37, 2422-2429.	1.2	99
71	Identification and Characterization of the Major Phosphorylation Sites of the B-type Natriuretic Peptide Receptor. Journal of Biological Chemistry, 1998, 273, 15533-15539.	1.6	117
72	Phosphorylation of the Kinase Homology Domain Is Essential for Activation of the A-Type Natriuretic Peptide Receptor. Molecular and Cellular Biology, 1998, 18, 2164-2172.	1.1	149

1

#	Article	IF	CITATIONS
73	A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry, 1990, 29, 10872-10878.	1.2	176

Natriuretic Peptides. , 0, , 125-141.