Julia Xiaojun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990655/publications.pdf

Version: 2024-02-01

257101 360668 2,003 37 24 35 citations g-index h-index papers 53 53 53 3702 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C, 2013, 1, 4676.	2.7	385
2	Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy. Theranostics, 2015, 5, 322-344.	4.6	212
3	Near-Infrared Fluorescent Materials for Sensing of Biological Targets. Sensors, 2008, 8, 3082-3105.	2.1	173
4	Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 297-312.	1.7	133
5	Integrated microfluidic systems with sample preparation and nucleic acid amplification. Lab on A Chip, 2019, 19, 2769-2785.	3.1	84
6	Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2017, 157, 1-9.	2.5	75
7	Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45763-45775.	4.0	71
8	Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110616.	2.5	67
9	Development of Gold Nanoparticle-Enhanced Fluorescent Nanocomposites. Langmuir, 2013, 29, 1584-1591.	1.6	61
10	Study of Fluorescence Quenching Ability of Graphene Oxide with a Layer of Rigid and Tunable Silica Spacer. Langmuir, 2018, 34, 603-611.	1.6	59
11	One-Pot Synthesis of Reduced Graphene Oxide/Metal (Oxide) Composites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37962-37971.	4.0	51
12	Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of the Total Environment, 2018, 618, 276-283.	3.9	51
13	Engineering of SiO ₂ â^'Auâ^'SiO ₂ Sandwich Nanoaggregates Using a Building Block: Single, Double, and Triple Cores for Enhancement of Near Infrared Fluorescence. Langmuir, 2008, 24, 7492-7499.	1.6	43
14	Nitrogen–Sulfur-Doped Graphene Quantum Dots with Metal Ion-Resistance for Bioimaging. ACS Applied Nano Materials, 2019, 2, 6858-6865.	2.4	40
15	Experimental and Numerical Studies of Spontaneous Imbibition with Different Boundary Conditions: Case Studies of Middle Bakken and Berea Cores. Energy & Energy & 2019, 33, 5135-5146.	2.5	39
16	Polymer nanoparticles based nano-fluid for enhanced oil recovery at harsh formation conditions. Fuel, 2020, 267, 117251.	3.4	37
17	One-pot synthesis of graphene quantum dots using humic acid and its application for copper (II) ion detection. Journal of Materials Science, 2021, 56, 4991-5005.	1.7	37
18	Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for <i>In Vitro</i> Cell Imaging and Metal Ion Detection. ACS Applied Materials & Detection	4.0	34

#	Article	IF	Citations
19	Enhanced Oil Recovery in High Salinity and Elevated Temperature Conditions with a Zwitterionic Surfactant and Silica Nanoparticles Acting in Synergy. Energy & Energy & 2020, 34, 2893-2902.	2.5	31
20	Increased Nonionic Surfactant Efficiency in Oil Recovery by Integrating with Hydrophilic Silica Nanoparticle. Energy & Samp; Fuels, 2019, 33, 8522-8529.	2.5	28
21	Nanozymes—Hitting the Biosensing "Target― Sensors, 2021, 21, 5201.	2.1	27
22	Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials. Sensors, 2008, 8, 5942-5960.	2.1	26
23	Molecular Simulation Study on the Volume Swelling and the Viscosity Reduction of <i>n</i> -Alkane/CO ₂ Systems. Industrial & Engineering Chemistry Research, 2019, 58, 8871-8877.	1.8	26
24	Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 2577-2587.	2.3	25
25	Development of silicon quantum dots based nano-fluid for enhanced oil recovery in tight Bakken cores. Fuel, 2020, 277, 118203.	3.4	24
26	Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS. Mikrochimica Acta, 2020, 187, 56.	2.5	22
27	Reproducibly synthesize gold nanorods and maintain their stability. RSC Advances, 2013, 3, 10909.	1.7	21
28	Comparative Study on the Static Adsorption Behavior of Zwitterionic Surfactants on Minerals in Middle Bakken Formation. Energy & Samp; Fuels, 2019, 33, 1007-1015.	2.5	21
29	A graphene oxide-based fluorescence assay for the sensitive detection of DNA exonuclease enzymatic activity. Analyst, The, 2019, 144, 6231-6239.	1.7	18
30	Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Canadian Journal of Physiology and Pharmacology, 2019, 97, 297-305.	0.7	17
31	Biocompatible G-Quadruplex/Hemin for Enhancing Antibacterial Activity of H ₂ O ₂ . ACS Applied Bio Materials, 2018, 1, 1019-1027.	2.3	12
32	Effect of Amorphous Silica Nanomatrix on Kinetics of Metalation of Encapsulated Porphyrin Molecules. Journal of Physical Chemistry C, 2009, 113, 19046-19054.	1.5	11
33	Static Adsorption of Surfactants on Bakken Rock Surfaces in High Temperature, High Salinity Conditions., 2019,,.		9
34	Nanocatalysts in Direct Methanol Fuel Cell Applications. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 394-399.	0.6	6
35	Label-free fluorescence assay coupled exonuclease reaction and SYBR Green I for the detection of T4 polynucleotide kinase activity. Analytical Methods, 2020, 12, 807-812.	1.3	4
36	Graphene Oxide-Based Biocompatible 3D Mesh with a Tunable Porosity and Tensility for Cell Culture. ACS Biomaterials Science and Engineering, 2018, 4, 1505-1517.	2.6	3