Fabrizio dâ€Adda di Fagagna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990624/publications.pdf

Version: 2024-02-01

90 papers 18,317 citations

50 h-index 90 g-index

98 all docs 98 docs citations 98 times ranked 20410 citing authors

#	Article	IF	Citations
1	DNA damage response at telomeres boosts the transcription of SARSâ€CoVâ€2 receptor ACE2 during aging. EMBO Reports, 2022, 23, e53658.	2.0	24
2	BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1. Nature Communications, 2022, 13, 226.	5.8	11
3	Telomere dysfunction in ageing and age-related diseases. Nature Cell Biology, 2022, 24, 135-147.	4.6	194
4	TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nature Communications, 2022, 13, 2302.	5.8	11
5	DNA Damage Triggers a New Phase in Neurodegeneration. Trends in Genetics, 2021, 37, 337-354.	2.9	37
6	Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 2021, 22, 75-95.	16.1	812
7	MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Reports, 2021, 34, 108565.	2.9	43
8	A Role for Human DNA Polymerase î» in Alternative Lengthening of Telomeres. International Journal of Molecular Sciences, 2021, 22, 2365.	1.8	3
9	DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. Journal of Cell Science, 2021, 134, .	1.2	9
10	Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Communications Biology, 2021, 4, 611.	2.0	32
11	The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Reports, 2021, 36, 109694.	2.9	15
12	Telomere transcription in ageing. Ageing Research Reviews, 2020, 62, 101115.	5.0	44
13	Detection of Telomeric DNA:RNA Hybrids Using TeloDRIP-qPCR. International Journal of Molecular Sciences, 2020, 21, 9774.	1.8	1
14	In Vitro Detection of Long Noncoding RNA Generated from DNA Double-Strand Breaks. Methods in Molecular Biology, 2019, 2004, 209-219.	0.4	0
15	Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Scientific Reports, 2019, 9, 6460.	1.6	49
16	RNase A treatment and reconstitution with DNA damage response RNA in living cells as a tool to study the role of non-coding RNA in the formation of DNA damage response foci. Nature Protocols, 2019, 14, 1489-1508.	5.5	7
17	Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome. Nature Communications, 2019, 10, 4990.	5.8	85
18	Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019, 21, 1286-1299.	4.6	233

#	Article	IF	Citations
19	DNA Damage In Situ Ligation Followed by Proximity Ligation Assay (DI-PLA). Methods in Molecular Biology, 2019, 1896, 11-20.	0.4	8
20	PREP1 tumor suppressor protects the late-replicating DNA by controlling its replication timing and symmetry. Scientific Reports, 2018, 8, 3198.	1.6	18
21	From "Cellular―RNA to "Smart―RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chemical Reviews, 2018, 118, 4365-4403.	23.0	63
22	NOTCH1 modulates activity of DNA-PKcs. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 20-27.	0.4	4
23	Target-enrichment sequencing for detailed characterization of small RNAs. Nature Protocols, 2018, 13, 768-786.	5 . 5	9
24	Long non-coding RNA in the control of genome stability and cancer phenotypes. Non-coding RNA Investigation, 2018, 2, 13-13.	0.6	7
25	BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nature Communications, 2018, 9, 5376.	5.8	176
26	A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell, 2017, 16, 422-427.	3.0	56
27	Express or repress? The transcriptional dilemma of damaged chromatin. FEBS Journal, 2017, 284, 2133-2147.	2.2	28
28	DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs. Nature Communications, 2017, 8, 13980.	5.8	76
29	Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Scientific Reports, 2017, 7, 43598.	1.6	31
30	A damaged genome's transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks. Nature Communications, 2017, 8, 15656.	5.8	89
31	Recent Advancements in DNA Damage–Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annual Review of Genomics and Human Genetics, 2017, 18, 87-113.	2.5	37
32	The cohesin complex prevents Myc-induced replication stress. Cell Death and Disease, 2017, 8, e2956-e2956.	2.7	11
33	Damage-induced IncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nature Cell Biology, 2017, 19, 1400-1411.	4.6	288
34	Transcription and DNA Damage: Holding Hands or Crossing Swords?. Journal of Molecular Biology, 2017, 429, 3215-3229.	2.0	52
35	DICER, DROSHA and DNA damage-response RNAs are necessary for the secondary recruitment of DNA damage response factors. Journal of Cell Science, 2016, 129, 1468-76.	1.2	99
36	NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex. Cell Reports, 2016, 16, 2068-2076.	2.9	53

#	Article	IF	Citations
37	<scp>RNA</scp> â€processing proteins regulate Mec1/ <scp>ATR</scp> activation by promoting generation of <scp>RPA</scp> â€coated ss <scp>DNA</scp> . EMBO Reports, 2015, 16, 221-231.	2.0	32
38	Notch is a direct negative regulator of the DNA-damage response. Nature Structural and Molecular Biology, 2015, 22, 417-424.	3.6	68
39	Human nuclear ARGONAUTE 2 interacts in vivo only with small RNAs and not with DNA. Cell Cycle, 2015, 14, 2001-2002.	1.3	2
40	Telomerase abrogates aneuploidyâ€induced telomere replication stress, senescence and cell depletion. EMBO Journal, 2015, 34, 1371-1384.	3.5	65
41	Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae. ELife, 2015, 4, .	2.8	26
42	Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Current Opinion in Genetics and Development, 2014, 26, 89-95.	1.5	106
43	Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death and Differentiation, 2014, 21, 998-1012.	5.0	254
44	Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication. Nature Communications, 2014, 5, 3649.	5.8	79
45	A direct role for small non-coding RNAs in DNA damage response. Trends in Cell Biology, 2014, 24, 171-178.	3.6	114
46	Stable Cellular Senescence Is Associated with Persistent DDR Activation. PLoS ONE, 2014, 9, e110969.	1.1	110
47	DNA Damage in Mammalian Neural Stem Cells Leads to Astrocytic Differentiation Mediated by BMP2 Signaling through JAK-STAT. Stem Cell Reports, 2013, 1, 123-138.	2.3	79
48	Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Research, 2012, 40, 5332-5342.	6.5	26
49	Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews Cancer, 2012, 12, 709-720.	12.8	181
50	Is cellular senescence an example of antagonistic pleiotropy?. Aging Cell, 2012, 11, 378-383.	3.0	62
51	Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO Journal, 2012, 31, 2839-2851.	3.5	200
52	Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. Cell Death and Differentiation, 2012, 19, 1847-1855.	5.0	65
53	Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature, 2012, 488, 231-235.	13.7	460
54	Terminally differentiated astrocytes lack DNA damage response signaling and are radioresistant but retain DNA repair proficiency. Cell Death and Differentiation, 2012, 19, 582-591.	5.0	58

#	Article	IF	Citations
55	Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 2012, 14, 355-365.	4.6	646
56	Never-ageing cellular senescence. European Journal of Cancer, 2011, 47, 1616-1622.	1.3	24
57	Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biology, 2011, 13, 292-302.	4.6	294
58	Epigenetic alterations associated with cellular senescence: A barrier against tumorigenesis or a red carpet for cancer?. Seminars in Cancer Biology, 2011, 21, 360-366.	4.3	35
59	Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. DMM Disease Models and Mechanisms, 2009, 2, 56-67.	1.2	77
60	SASPense and DDRama in cancer and ageing. Nature Cell Biology, 2009, 11, 921-923.	4.6	96
61	Cellular senescence: hot or what?. Current Opinion in Genetics and Development, 2009, 19, 25-31.	1.5	103
62	Living on a break: cellular senescence as a DNA-damage response. Nature Reviews Cancer, 2008, 8, 512-522.	12.8	866
63	Cellular senescence and cellular longevity: Nearly 50Âyears on and still working on it. Experimental Cell Research, 2008, 314, 1907-1908.	1.2	6
64	Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 2008, 133, 1006-1018.	13.5	1,446
65	DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle, 2008, 7, 3601-3606.	1.3	76
66	Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression. Carcinogenesis, 2007, 28, 2082-2088.	1.3	74
67	Need telomere maintenance? Call 911. Cell Division, 2007, 2, 3.	1.1	11
68	Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology, 2007, 8, 729-740.	16.1	3,502
69	Breaking news: high-speed race ends in arrest – how oncogenes induce senescence. Trends in Cell Biology, 2007, 17, 529-536.	3.6	73
70	Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 2006, 444, 638-642.	13.7	1,576
71	Telomere and Telomerase Modulation by the Mammalian Rad9/Rad1/Hus1 DNA-Damage-Checkpoint Complex. Current Biology, 2006, 16, 1551-1558.	1.8	50
72	Yeast Nhp6A/B and Mammalian Hmgb1 Facilitate the Maintenance of Genome Stability. Current Biology, 2005, 15, 68-72.	1.8	84

#	Article	IF	Citations
73	Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development, 2005, 126, 111-117.	2.2	383
74	Functional links between telomeres and proteins of the DNA-damage response. Genes and Development, 2004, 18, 1781-1799.	2.7	244
75	Activation of the DNA Damage Response by Telomere Attrition: A Passage to Cellular Senescence. Cell Cycle, 2004, 3, 541-544.	1.3	61
76	A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426, 194-198.	13.7	2,381
77	The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Reports, 2003, 4, 47-52.	2.0	76
78	Genetics and development. Current Opinion in Genetics and Development, 2002, 12, 621-627.	1.5	0
79	Identification of a DNA Nonhomologous End-Joining Complex in Bacteria. Science, 2002, 297, 1686-1689.	6.0	284
80	Cell biology. Current Opinion in Cell Biology, 2002, 14, 661-670.	2.6	0
81	Human replication protein Cdc6 is selectively cleaved by caspase 3 during apoptosis. EMBO Reports, 2002, 3, 780-784.	2.0	39
82	Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Current Biology, 2001, 11, 1192-1196.	1.8	260
83	Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase Illalpha. Nucleic Acids Research, 2001, 29, 3172-3180.	6.5	25
84	Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nature Genetics, 1999, 23, 76-80.	9.4	218
85	Cleavage and Inactivation of ATM during Apoptosis. Molecular and Cellular Biology, 1999, 19, 6076-6084.	1.1	95
86	Interaction of HIV-1 Tat Protein with Heparin. Journal of Biological Chemistry, 1997, 272, 11313-11320.	1.6	179
87	Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. Journal of Virology, 1996, 70, 4427-4437.	1.5	136
88	Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. Journal of Virology, 1995, 69, 2765-2775.	1.5	54
89	Stimulation of the adenovirus major late promoter in vitro by transcription factor USF is enhanced by the adenovirus DNA binding protein. Journal of Virology, 1994, 68, 8288-8295.	1.5	25
90	A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1. Virology, 1992, 186, 133-147.	1.1	94