List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenanthraquinone-based polymer organic cathodes for highly efficient Na-ion batteries. Chemical Engineering Journal, 2022, 449, 137745.	12.7	12
2	Long lifespan organic K-ion batteries with working voltage above 2ÂV in ether electrolytes. Electrochimica Acta, 2021, 365, 137365.	5.2	5
3	Insoluble small-molecule organic cathodes for highly efficient pure-organic Li-ion batteries. Green Chemistry, 2021, 23, 6090-6100.	9.0	19
4	Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries. Nano Letters, 2021, 21, 1896-1901.	9.1	25
5	Novel low-cost, high-energy-density (>700ÂWhÂkgâ^'1) Li-rich organic cathodes for Li-ion batteries. Chemical Engineering Journal, 2021, 415, 128509.	12.7	29
6	Electrolyte Effect on a Polyanionic Organic Anode for Pure Organic K-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38315-38324.	8.0	17
7	A Lowâ€Cost Naâ€Ion and Kâ€Ion Batteries Using a Common Organic Cathode and Bismuth Anode. ChemSusChem, 2021, 14, 3815-3820.	6.8	7
8	A polyanionic anthraquinone organic cathode for pure small-molecule organic Li-ion batteries. International Journal of Hydrogen Energy, 2021, 46, 36801-36810.	7.1	5
9	Ultra-Stable, Ultra-Long-Lifespan and Ultra-High-Rate Na-ion Batteries Using Small-Molecule Organic Cathodes. Energy Storage Materials, 2021, 41, 738-747.	18.0	40
10	Benzene-bridged anthraquinones as a high-rate and long-lifespan organic cathode for advanced Na-ion batteries. Chemical Engineering Journal, 2021, 426, 131251.	12.7	12
11	Insoluble polyanionic anthraquinones with two strong ionic O-K bonds as stable organic cathodes for pure organic K-ion batteries. Science China Materials, 2021, 64, 1598-1608.	6.3	12
12	Synthesis of 1,4-benzoquinone dimer as a high-capacity (501†mA†h gâ^'1) and high-energy-density (>1000†Wh kgâ^'1) organic cathode for organic Li-Ion full batteries. Journal of Power Sources, 2020, 448, 227456.	7.8	29
13	Atomic Structure Modification for Electrochemical Nitrogen Reduction to Ammonia. Advanced Energy Materials, 2020, 10, 1903172.	19.5	110
14	Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. Journal of Materials Science, 2020, 55, 17081-17093.	3.7	7
15	Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 24573-24581.	7.1	15
16	Electrochemically manipulating the redox state of 2,2′,5,5′-tetrahydroxybiphenyl as a new organic Li-rich cathode for Li-ion batteries. Organic Electronics, 2020, 81, 105661.	2.6	8
17	Novel Insoluble Organic Cathodes for Advanced Organic K″on Batteries. Advanced Functional Materials, 2020, 30, 2000675.	14.9	110
18	Longâ€lifespan Polyanionic Organic Cathodes for Highly Efficient Organic Sodiumâ€ion Batteries. ChemSusChem, 2020, 13, 1991-1996.	6.8	26

#	Article	IF	CITATIONS
19	A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20127-20131.	10.3	51
20	Poly(N-vinylcarbazole) (PVK) as a high-potential organic polymer cathode for dual-intercalation Na-ion batteries. Organic Electronics, 2019, 75, 105386.	2.6	23
21	A polyanionic organic cathode for highly efficient K-ion full batteries. Electrochemistry Communications, 2019, 105, 106509.	4.7	26
22	In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries. ACS Applied Materials & Interfaces, 2019, 11, 32987-32993.	8.0	21
23	Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chemical Communications, 2019, 55, 1801-1804.	4.1	84
24	A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs. Organic Electronics, 2019, 73, 102-108.	2.6	1
25	Highly Stable and High Rateâ€Performance Naâ€Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode. ChemSusChem, 2019, 12, 2181-2185.	6.8	43
26	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	2.0	34
27	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	13.8	340
28	Efficient solution-processed blue and white OLEDs based on a high-triplet bipolar host and a blue TADF emitter. Organic Electronics, 2018, 58, 276-282.	2.6	53
29	Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries. Chemical Communications, 2018, 54, 5578-5581.	4.1	59
30	Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. Journal of Colloid and Interface Science, 2018, 512, 398-403.	9.4	32
31	Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Organic Electronics, 2018, 62, 536-541.	2.6	71
32	Pretreatment of Lithium Surface by Using Iodic Acid (HIO ₃) To Improve Its Anode Performance in Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7068-7074.	8.0	50
33	Sodium Titanate/Carbon (<scp>Na₂Ti₃O₇</scp> /C) Nanofibers via Electrospinning Technique as the Anode of Sodiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 79-85.	4.9	24
34	Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy, 2017, 33, 350-355.	16.0	209
35	Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochemistry Communications, 2017, 75, 29-32.	4.7	47
36	One-step synthesis of novel poly(terephthalate- <i>alt</i> benzoquinone) with high specific capacity as a stable organic cathode for Li-ion batteries. New Journal of Chemistry, 2017, 41, 14539-14544.	2.8	18

#	Article	IF	CITATIONS
37	Investigating the Electrochemical Behavior of Cobalt(II) Terephthalate (CoC8H4O4) as the Organic Anode in K-ion Battery. Electrochimica Acta, 2017, 253, 333-338.	5.2	40
38	Highly twisted organic molecules with ortho linkage as the efficient bipolar hosts for sky-blue thermally activated delayed fluorescence emitter in OLEDs. Organic Electronics, 2017, 50, 153-160.	2.6	12
39	Ternary Organic Solar Cells with Coumarin7 as the Donor Exhibiting Greater Than 10% Power Conversion Efficiency and a High Fill Factor of 75%. ACS Applied Materials & Interfaces, 2017, 9, 29907-29916.	8.0	32
40	<i>Para</i> -Conjugated Dicarboxylates with Extended Aromatic Skeletons as the Highly Advanced Organic Anodes for K-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 27414-27420.	8.0	77
41	Enhanced reversibility and electrochemical performances of mechanically alloyed Cu ₃ P achieved by Fe addition. RSC Advances, 2016, 6, 26800-26808.	3.6	11
42	Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. Journal of Power Sources, 2016, 322, 10-16.	7.8	78
43	Silver Terephthalate (Ag 2 C 8 H 4 O 4) Offering in-situ Formed Metal/Organic Nanocomposite as the Highly Efficient Organic Anode in Li-ion and Na-ion Batteries. Electrochimica Acta, 2016, 219, 418-424.	5.2	43
44	Improved performance of LiCoO ₂ cathode enabled by electrode sputtering coating with Al ₂ O ₃ ., 2016, , .		0
45	Organic Potassium Terephthalate (K2C8H4O4) with Stable Lattice Structure Exhibits Excellent Cyclic and Rate Capability in Li-ion Batteries. Electrochimica Acta, 2016, 222, 1086-1093.	5.2	48
46	Extremely Accessible Potassium Nitrate (KNO ₃) as the Highly Efficient Electrolyte Additive in Lithium Battery. ACS Applied Materials & Interfaces, 2016, 8, 15399-15405.	8.0	123
47	Silver-mediated calcium terephthalate with enhanced electronic conductivity as an organic anode for efficient Li-ion batteries. RSC Advances, 2016, 6, 29404-29409.	3.6	7
48	Extending the High-Voltage Capacity of LiCoO ₂ Cathode by Direct Coating of the Composite Electrode with Li ₂ CO ₃ via Magnetron Sputtering. Journal of Physical Chemistry C, 2016, 120, 422-430.	3.1	97
49	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polymer Chemistry, 2016, 7, 926-932.	3.9	43
50	Cost-effective synthesis of α-carboline/pyridine hybrid bipolar host materials with improved electron-transport ability for efficient blue phosphorescent OLEDs. RSC Advances, 2015, 5, 65481-65486.	3.6	12
51	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	5.5	31
52	Using an Organic Molecule with Low Triplet Energy as a Host in a Highly Efficient Blue Electrophosphorescent Device. Angewandte Chemie - International Edition, 2014, 53, 2147-2151.	13.8	72
53	High efficiency blue PhOLEDs using spiro-annulated triphenylamine/fluorene hybrids as host materials with high triplet energy, high HOMO level and high T g. Organic Electronics, 2014, 15, 3568-3576.	2.6	20
54	Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chemical Society Reviews, 2014, 43, 6439-6469.	38.1	401

#	Article	IF	CITATIONS
55	Efficient blue and bluish-green iridium phosphors: Fine-tuning emissions of FIrpic by halogen substitution on pyridine-containing ligands. Organic Electronics, 2013, 14, 3163-3171.	2.6	9
56	Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy: host materials for efficient blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 463-469.	5.5	57
57	High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[<i>d</i>]thiazole Ligands. Journal of Physical Chemistry C, 2013, 117, 19134-19141.	3.1	69
58	Highly efficient, solution-processed orange–red phosphorescent OLEDs by using new iridium phosphor with thieno[3,2-c]pyridine derivative as cyclometalating ligand. Organic Electronics, 2013, 14, 3392-3398.	2.6	29
59	Phosphoryl/Sulfonyl-Substituted Iridium Complexes as Blue Phosphorescent Emitters for Single-Layer Blue and White Organic Light-Emitting Diodes by Solution Process. Chemistry of Materials, 2012, 24, 4581-4587.	6.7	138
60	Simple Bipolar Molecules Constructed from Biphenyl Moieties as Host Materials for Deepâ€Blue Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2012, 18, 5510-5514.	3.3	63
61	Tri-, Tetra- and Pentamers of 9,9′-Spirobifluorenes through Full <i>ortho</i> -Linkage: High Triplet-Energy Pure Hydrocarbon Host for Blue Phosphorescent Emitter. Organic Letters, 2010, 12, 5648-5651.	4.6	70
62	Diarylmethylene-bridged triphenylamine derivatives encapsulated with fluorene: very high Tg host materials for efficient blue and green phosphorescent OLEDs. Journal of Materials Chemistry, 2010, 20, 3232.	6.7	60
63	Bridged triphenylamines as novel host materials for highly efficient blue and green phosphorescent OLEDs. Chemical Communications, 2009, , 3398.	4.1	39
64	Influence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N,N-dimethylformamide-ionic liquid composite film. Electrochimica Acta, 2007, 52, 6178-6185.	5.2	38