
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990222/publications.pdf Version: 2024-02-01

<u> <u>Chanillan</u> Xi</u>

#	Article	IF	CITATIONS
1	Direct C–C Bond Formation of Allylic Alcohols with CO ₂ toward Carboxylic Acids by Photoredox/Nickel Dual Catalysis. ACS Catalysis, 2022, 12, 2781-2787.	5.5	28
2	MeOTf-catalyzed formal [4 + 2] annulations of styrene oxides with alkynes leading to polysubstituted naphthalenes through sequential electrophilic cyclization/ring expansion. Chinese Chemical Letters, 2022, 33, 3021-3025.	4.8	2
3	Photoredox-catalyzed Fluorodifluoroacetylation of Alkenes with FSO2CF2CO2Me and Et3N‧3HF. Organic and Biomolecular Chemistry, 2022, , .	1.5	4
4	Photo-catalyzed sequential dearomatization/carboxylation of benzyl o-halogenated aryl ether with CO2 leading to spirocyclic carboxylic acids. Chinese Journal of Catalysis, 2022, 43, 1652-1656.	6.9	10
5	Recent Advances in Lightâ€Induced Carboxylation of Organic (Pseudo)Halides with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
6	MeOTfâ€Catalyzed Intramolecular Acylâ€Cyclization of Aryl Isocyanates: Efficient Access to Phenanthridinâ€6(5 <i>H</i>)â€one and 3,4â€Dihydroisoquinolinâ€1(2 <i>H</i>)â€one Derivatives. Asian Journal Organic Chemistry, 2021, 10, 355-359.	of1.3	10
7	MeOTf/KI-catalyzed efficient synthesis of 2-arylnaphthalenes via cyclodimerization of styrene oxides. Organic and Biomolecular Chemistry, 2021, 19, 8559-8565.	1.5	2
8	Recent Advance of Transition-Metal-Catalyzed Tandem Carboxylation Reaction of Unsaturated Hydrocarbons with Organometallic Reagents and CO ₂ . Chinese Journal of Organic Chemistry, 2021, 41, 80.	0.6	21
9	CO ₂ -tuned highly selective reduction of formamides to the corresponding methylamines. Green Chemistry, 2021, 23, 7534-7538.	4.6	5
10	Photoredox-catalyzed hydroxydifluoroacetylation of alkenes with FSO ₂ CF ₂ CO ₂ Me and H ₂ O: simple synthesis of CF ₂ CO ₂ Me-containing alcohols and difluorolactones. Green Chemistry, 2021, 23, 2324-2328.	4.6	12
11	Synthesis of polyfluorinated 4‑hydroxyquinolin-2(1H)‑ones based on the cyclization of 2-alkynylanilines with carbon dioxide. Journal of Fluorine Chemistry, 2021, 242, 109720.	0.9	6
12	Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide. Organic Letters, 2021, 23, 2303-2307.	2.4	26
13	Rh(I)-Catalyzed Regioselective Arylcarboxylation of Acrylamides with Arylboronic Acids and CO ₂ . Chinese Journal of Organic Chemistry, 2021, 41, 425.	0.6	2
14	Cobalt atalyzed Highly Regioselective Three omponent Arylcarboxylation of Acrylate with Aryl Bromides and Carbon Dioxide. ChemSusChem, 2021, 14, 4941-4946.	3.6	3
15	Recent advances in homogeneous photocatalytic carboxylation incorporated with CO ₂ . Chinese Science Bulletin, 2021, 66, 773-797.	0.4	2
16	Cp ₂ TiCl ₂ -Catalyzed Carboxylation of Aryl Chlorides with Carbon Dioxide in the Presence of <i>n</i> -BuMgCl. Organometallics, 2020, 39, 1476-1479.	1.1	3
17	Synthesis of polyfluorinated o-hydroxyacetophenones – convenient precursors of 3-benzylidene-2-phenylchroman-4-ones. Journal of Fluorine Chemistry, 2020, 229, 109435.	0.9	5
18	Highly efficient synthesis of novel fluorinated 3-amino-2-mercaptobenzothiazole-2(3H)-thione derivatives. Journal of Fluorine Chemistry, 2020, 239, 109628.	0.9	1

#	Article	IF	CITATIONS
19	Lightâ€Mediated Carboxylation Using Carbon Dioxide. ChemSusChem, 2020, 13, 6201-6218.	3.6	62
20	Photoredox-catalyzed dicarbofunctionalization of styrenes with amines and CO ₂ : a convenient access to γ-amino acids. Green Chemistry, 2020, 22, 5961-5965.	4.6	67
21	Marriage of simple alkenes or alkynes and organophosphorus compounds through group IV metallocenes. Coordination Chemistry Reviews, 2020, 416, 213330.	9.5	3
22	Cobalt atalyzed Reductive Carboxylation of Aryl Bromides with Carbon Dioxide. Advanced Synthesis and Catalysis, 2020, 362, 2337-2341.	2.1	17
23	Visible-light-triggered direct keto-difluoroacetylation of styrenes with (fluorosulfonyl)difluoroacetate and dimethyl sulfoxide leads to α-difluoroacetylated ketones. Chemical Communications, 2019, 55, 10980-10983.	2.2	19
24	α-Methylation of 2-Arylacetonitrile by a Trimethylamine-Borane/CO ₂ System. Journal of Organic Chemistry, 2019, 84, 9744-9749.	1.7	12
25	Synthesis of polyfluorinated benzofurans. Journal of Fluorine Chemistry, 2019, 227, 109371.	0.9	7
26	Concise and Efficient Synthesis of Indole–Indolone Scaffolds through MeOTf-Induced Annulation of <i>N</i> -(2-Cyanoaryl)indoles. ACS Omega, 2019, 4, 18734-18740.	1.6	8
27	Recent advances in nucleophile-triggered CO ₂ -incorporated cyclization leading to heterocycles. Chemical Society Reviews, 2019, 48, 382-404.	18.7	275
28	Reduction of CO ₂ with NaBH ₄ /I ₂ for the Conversion of Thiophenols to Aryl Methyl Sulfides. Journal of Organic Chemistry, 2019, 84, 8661-8667.	1.7	16
29	Potassium complexes containing bidentate pyrrole ligands: synthesis, structures, and catalytic activity for the cyclotrimerization of isocyanates. Dalton Transactions, 2019, 48, 8116-8121.	1.6	11
30	Titanocene atalyzed Sequential Carbocarboxylation of Dienes and Alkenes with Organic Halides and Carbon Dioxide in the Presence of n BuMgCl. ChemCatChem, 2019, 11, 3814-3817.	1.8	12
31	Lewis Base Promoted Reduction of CO ₂ with BH ₃ NH ₃ into Boryl Formates: CO ₂ as a Carbon Source in Organic Synthesis Under Mild Conditions. European Journal of Organic Chemistry, 2018, 2018, 1739-1743.	1.2	28
32	Triflates-Triggered Intermolecular Cyclization of Carbodiimides Leading to 2-Aminoquinazolinone and 2,4-Diaminoquinazoline Derivatives. Organic Letters, 2018, 20, 2148-2151.	2.4	10
33	Cp2TiCl2-catalyzed highly regioselective hydroamination of styrenes with hydroxylamines. Organic Chemistry Frontiers, 2018, 5, 1184-1187.	2.3	3
34	ROTf-induced annulation of heteroatom reagents and unsaturated substrates leading to cyclic compounds. Royal Society Open Science, 2018, 5, 181389.	1.1	5
35	Reduction of CO ₂ into Methylene Coupled with the Formation of C–S Bonds under NaBH ₄ /I ₂ System. Organic Letters, 2018, 20, 6678-6681.	2.4	28
36	MeOTf-induced annulation of arylisocyanates and arylalkynes leading to 4-methoxyl-2,3-diarylquinolines. Tetrahedron Letters, 2018, 59, 2440-2442.	0.7	7

#	Article	IF	CITATIONS
37	Nickel-Catalyzed Arylative Carboxylation of Alkynes with Arylmagnesium Reagents and Carbon Dioxide Leading to Trisubstituted Acrylic Acids. Organic Letters, 2018, 20, 4131-4134.	2.4	30
38	Highly efficient synthesis of polyfluorinated 2-mercaptobenzothiazole derivatives. Journal of Fluorine Chemistry, 2018, 212, 130-136.	0.9	7
39	1,4â€Dioxaneâ€Tuned Catalystâ€Free Methylation of Amines by CO ₂ and NaBH ₄ . ChemSusChem, 2018, 11, 2296-2299.	3.6	29
40	lodine-catalyzed aerobic oxidation of o-alkylazoarenes to 2H-indazoles. Tetrahedron, 2017, 73, 1311-1316.	1.0	9
41	External oxidant-free cross-coupling of arylcopper and alkynylcopper reagents leading to arylalkyne. RSC Advances, 2017, 7, 28308-28312.	1.7	7
42	Cp ₂ TiCl ₂ -catalyzed hydrocarboxylation of alkynes with CO ₂ : formation of α,β-unsaturated carboxylic acids. RSC Advances, 2017, 7, 3534-3539.	1.7	18
43	Substrate-Controlled Transformation of Azobenzenes to Indazoles and Indoles via Rh(III)-Catalysis. Journal of Organic Chemistry, 2017, 82, 512-520.	1.7	54
44	MeOTf-Mediated Annulation of Alkylnitriles and Arylalkynes Leading to Polysubstituted N <i>H</i> -Pyrroles. Journal of Organic Chemistry, 2017, 82, 11391-11398.	1.7	24
45	I ₂ -Mediated oxidative bicyclization of 4-pentenamines to prolinol carbamates with CO ₂ incorporating oxyamination of the Cî€C bond. Green Chemistry, 2017, 19, 4515-4519.	4.6	28
46	Advances in transmetalation reactions originated from organozirconium compounds. Coordination Chemistry Reviews, 2017, 350, 275-284.	9.5	16
47	Cp ₂ TiCl ₂ -Catalyzed Regioselective Hydrocarboxylation of Alkenes with CO ₂ . Organic Letters, 2016, 18, 2050-2053.	2.4	91
48	I ₂ -Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C–H functionalization. Organic and Biomolecular Chemistry, 2016, 14, 9912-9918.	1.5	28
49	MeOTf-catalyzed annulation of aldehydes and arylalkynes leading to 2,3-disubstituted indanones. Organic Chemistry Frontiers, 2016, 3, 1116-1119.	2.3	22
50	MeOTf- and TBD-Mediated Carbonylation of <i>ortho</i> -Arylanilines with CO ₂ Leading to Phenanthridinones. Journal of Organic Chemistry, 2016, 81, 6672-6676.	1.7	87
51	Copper-catalyzed carboxylation reactions using carbon dioxide. Organic and Biomolecular Chemistry, 2016, 14, 3666-3676.	1.5	136
52	Directly Oxidative Cross-Coupling between Alkenylzirconocene and Alkynylcopper Reagents. Organometallics, 2016, 35, 1415-1419.	1.1	3
53	<i>β</i> -Arylation of oxime ethers using diaryliodonium salts through activation of inert C(sp)–H bonds using a palladium catalyst. Chemical Science, 2016, 7, 1383-1387.	3.7	79
54	Multifaceted zirconate complexes in organic synthesis. Coordination Chemistry Reviews, 2016, 308, 22-31.	9.5	11

#	Article	IF	CITATIONS
55	A concise and efficient synthesis of benzimidazo[1,2- <i>c</i>]quinazolines through Cul-catalyzed intramolecular <i>N</i> -arylations. Beilstein Journal of Organic Chemistry, 2015, 11, 2365-2369.	1.3	18
56	Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via Nâ•N Bond Cleavage for the Regioselective Synthesis of Quinolines. Organic Letters, 2015, 17, 5836-5839.	2.4	37
57	Zirconocene-catalyzed sequential ethylcarboxylation of alkenes using ethylmagnesium chloride and carbon dioxide. Chemical Communications, 2015, 51, 6640-6642.	2.2	25
58	Conversion of Zirconacyclopentadienes into Metalloles: Fagan–Nugent Reaction and Beyond. Accounts of Chemical Research, 2015, 48, 935-946.	7.6	114
59	Copper-Catalyzed Carboxylation of Alkenylzirconocenes with Carbon Dioxide Leading to α,β-Unsaturated Carboxylic Acids. Organic Letters, 2015, 17, 5112-5115.	2.4	40
60	MeOTf-Induced Carboannulation of Isothiocyanates and Aryl Alkynes with Câ•6 Bond Cleavage: Access to Indenones. Organic Letters, 2015, 17, 4388-4391.	2.4	55
61	Copper-mediated reaction of oxazirconacyclopentenes with dichlorophenylphosphine: a new pathway for the formation of 1,2-oxaphosphole derivatives. RSC Advances, 2015, 5, 71724-71727.	1.7	4
62	Zirconoarylation of alkynes through <i>p</i> -chloranil-promoted reductive elimination of arylzirconates. Beilstein Journal of Organic Chemistry, 2014, 10, 528-534.	1.3	5
63	MeOTf-induced carboannulation of arylnitriles and aromatic alkynes: a new metal-free strategy to construct indenones. Chemical Communications, 2014, 50, 2775-2777.	2.2	60
64	Recent progress in copper-catalyzed electrophilic amination. Catalysis Science and Technology, 2014, 4, 4169-4177.	2.1	79
65	Direct cleavage of the Nî€N bond of azobenzenes by MeOTf leading to N-arylbenzimidazoles. Organic Chemistry Frontiers, 2014, 1, 657-660.	2.3	17
66	Copper-Catalyzed Domino Reactions for the Synthesis of Cyclic Compounds. Journal of Organic Chemistry, 2014, 79, 8507-8515.	1.7	70
67	Chemoselective Phosphination of Titanacyclobutene: A Convenient Method for Synthesis of Allylphosphine Derivatives. Organometallics, 2014, 33, 844-846.	1.1	8
68	Rh(III)-Catalyzed Cascade Oxidative Olefination/Cyclization of Picolinamides and Alkenes via C–H Activation. Organic Letters, 2014, 16, 3142-3145.	2.4	54
69	Cu-Catalyzed Arylcarbocyclization of Alkynes with Diaryliodonium Salts through C–C Bond Formation on Inert C _(sp3) –H Bond. Organic Letters, 2014, 16, 3776-3779.	2.4	56
70	Alkyltriflate-Triggered Annulation of Arylisothiocyanates and Alkynes Leading to Multiply Substituted Quinolines through Domino Electrophilic Activation. Organic Letters, 2014, 16, 1120-1123.	2.4	75
71	Copper-mediated electrophilic imination of alkenylzirconocenes with O-benzoyl ketoximes and aldoximes. Chemical Communications, 2013, 49, 5513.	2.2	16
72	Cyclotrimerization of terminal alkynes catalyzed by the system of NiCl2/Zn and (benzimidazolyl)-6-(1-(arylimino)ethyl)pyridines. Dalton Transactions, 2013, 42, 13327.	1.6	27

CHANJUAN XI

#	Article	IF	CITATIONS
73	Copper-Mediated Reaction of Zirconacyclopentadienes with Azides: A One-Pot Three-Component Synthesis of Multiply Substituted Pyrroles from One Azide and Two Alkynes. Organometallics, 2013, 32, 6182-6185.	1.1	14
74	Copper-catalyzed oxidation of arene-fused cyclic amines to cyclic imides. Chemical Communications, 2013, 49, 10650.	2.2	31
75	Copper-Mediated Amidation of Alkenylzirconocenes with Acyl Azides: Formation of Enamides. Organic Letters, 2013, 15, 5174-5177.	2.4	31
76	Synthesis, characterization, and catalytic activity of (1,2-Diaryl)alkenylphosphine palladium complexes. Polyhedron, 2013, 52, 1323-1328.	1.0	4
77	Copper-catalyzed tandem S-alkylation and S-alkenylation of sodium sulfide: synthesis of 2,3-dihydrothiophenes and thiophenes. Tetrahedron Letters, 2013, 54, 1475-1477.	0.7	32
78	Protonated DBU as catalyst for cascade addition–cyclization of 2-alkynylaniline and carbon disulfide. Tetrahedron Letters, 2013, 54, 2357-2361.	0.7	28
79	CuCl-catalyzed ortho trifluoromethylation of arenes and heteroarenes with a pivalamido directing group. Chemical Communications, 2013, 49, 4552.	2.2	90
80	Direct Vicinal Disubstitution of Diaryliodonium Salts by Pyridine <i>N</i> â€oxides and <i>N</i> â€amidates by a 1,3â€Radical Rearrangement. Angewandte Chemie - International Edition, 2013, 52, 7574-7578.	7.2	46
81	Cu-Catalyzed Synthesis of Diaryl Thioethers and <i>S</i> -Cycles by Reaction of Aryl Iodides with Carbon Disulfide in the Presence of DBU. Journal of Organic Chemistry, 2013, 78, 5001-5006.	1.7	108
82	Reactivity of Alkynylzirconate toward α,β-Unsaturated Carbonyl Compounds. Organometallics, 2013, 32, 869-873.	1.1	6
83	Synthesis of 3-Substituted Isocoumarin Derivatives via Cul-Catalyzed Reaction of o-Bromobenzamides with 1,3-Diketones. Synthesis, 2012, 44, 1892-1897.	1.2	16
84	A Convenient Metal-Free Method for the Synthesis of Benzothiazolethiones from o-Haloanilines and Carbon Disulfide. Synthesis, 2012, 44, 1477-1480.	1.2	15
85	Assembly of 3-Substituted Isocoumarins via a Cul-Catalyzed Domino Coupling/Addition/Deacylation Process. Journal of Organic Chemistry, 2012, 77, 2331-2336.	1.7	84
86	Convenient One-Step Synthesis of cis-2,4,5-Triarylimidazolines from Aromatic Aldehydes with Urea. Synthetic Communications, 2012, 42, 905-913.	1.1	6
87	Copper-Catalyzed Electrophilic Amination of Alkenylzirconocenes with <i>O</i> -Benzoylhydroxylamines: An Efficient Method for Synthesis of Enamines. Organic Letters, 2012, 14, 4750-4753.	2.4	56
88	Concise Approach to Benzisothiazol-3(2 <i>H</i>)-one via Copper-Catalyzed Tandem Reaction of <i>o</i> -Bromobenzamide and Potassium Thiocyanate in Water. Journal of Organic Chemistry, 2012, 77, 4148-4151.	1.7	87
89	Copper-Catalyzed Domino Reaction of Heteroallenes towards Benzo-Heterocycle Compounds. Heterocycles, 2012, 84, 209.	0.4	2
90	Investigation on Copper-catalyzed Vinylation ofN- andS-centered Nucleophiles. Chinese Journal of Organic Chemistry, 2012, 32, 986.	0.6	4

CHANJUAN XI

#	Article	IF	CITATIONS
91	Copper-Mediated Reaction of Oxazirconacyclopentenes with But-2-ynedioates: A New Pathway for the Formation of α-Methylene-l´-lactone Derivatives. Organometallics, 2011, 30, 5077-5079.	1.1	5
92	A Protocol to 2-Aminobenzimidazoles via Copper-Catalyzed Cascade Addition and Cyclization of <i>o</i> -Haloanilines and Carbodiimides. Journal of Organic Chemistry, 2011, 76, 3174-3180.	1.7	78
93	Domino Nâ^'H/Câ^'H Bond Activation: Copper-Catalyzed Synthesis of Nitrogen-Bridgehead Heterocycles Using Azoles and 1,4-Dihalo-1,3-dienes. Organic Letters, 2011, 13, 228-231.	2.4	63
94	Synthesis of 2-Mercaptobenzothiazoles via DBU-Promoted Tandem Reaction of <i>o</i> -Haloanilines and Carbon Disulfide. Organic Letters, 2011, 13, 3202-3205.	2.4	76
95	Highly regioselective cyclotrimerization of terminal alkynes catalyzed by Fe(II) complexes bearing 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridines. Catalysis Communications, 2011, 12, 489-492.	1.6	34
96	Palladium atalyzed Tandem <i>N</i> â€Vinylation and Cyclization of Anilines and Haloenynes: An Efficient Approach to Substituted Quinolines. Advanced Synthesis and Catalysis, 2011, 353, 2659-2664.	2.1	14
97	Copper-catalyzed one-pot synthesis of 2-thioxo-2,3-dihydroquinazolin-4(1H)-ones from ortho-bromobenzamides and isothiocyanates. Tetrahedron Letters, 2011, 52, 231-235.	0.7	31
98	Cu-Catalyzed Double S-Alkenylation of Potassium Sulfide: A Highly Efficient Method for the Synthesis of Various Thiophenes. Organic Letters, 2010, 12, 3930-3933.	2.4	153
99	Zirconacycle-mediated synthesis of carbocycles. Science Bulletin, 2010, 55, 3235-3247.	1.7	25
100	Copper atalyzed Double <i>N</i> â€Vinylation of Aromatic Amines: An Efficient Synthesis of Various Substituted <i>N</i> â€Arylpyrroles. European Journal of Organic Chemistry, 2010, 2010, 5426-5431.	1.2	33
101	Preparation of 2-phospholene derivatives from zirconacyclopentenes. Tetrahedron Letters, 2010, 51, 6136-6138.	0.7	14
102	A Highly Efficient Ruthenium(II) Catalyst with (1,2-Diarylvinyl)phosphine Ligands for Direct Ortho Arylation of 2-Arylpyridine with Aryl Chlorides. Organometallics, 2010, 29, 3222-3226.	1.1	32
103	Cycloaddition of Zirconacyclopentadiene with 2-Bromoacrylate, 2-Bromoacrylaldehyde, and 3-Bromofuran-2,5-dione in the Presence of CuCl: A New Pathway for the Formation of Benzene Derivatives and Isobenzofuran-1,3-dione. Synthetic Communications, 2010, 40, 570-579.	1.1	9
104	Copper-Catalyzed Amination of Alkenyl Halides: Efficient Method for the Synthesis of Enamines. Organic Letters, 2010, 12, 2951-2953.	2.4	28
105	Reactivity of alkynylzirconates towards allyl bromides: selective formation of β-allyl-zirconacyclopentadienes. Chemical Communications, 2010, 46, 7801.	2.2	14
106	Coupling Reactions of Zirconate Complexes Induced by Carbonyl Compounds. Angewandte Chemie - International Edition, 2009, 48, 8120-8123.	7.2	21
107	2â€Pyridylquinoxaline derivatives as <i>N</i> , <i>N</i> â€ligands for palladiumâ€catalyzed Suzuki–Miyaura reaction. Applied Organometallic Chemistry, 2009, 23, 329-332.	1.7	8
108	CuCl-catalyzed reaction of zirconacyclopentenes with oxalyl chloride: a new pathway for the preparation of cyclopentenones. Tetrahedron Letters, 2009, 50, 5434-5436.	0.7	20

#	Article	IF	CITATIONS
109	Reactivity of [(2-Phosphino)ethenyl]zirconocene Chloride toward CpM(CO)3Cl (M = Mo, W): Formation of [(3-Phosphino)propenoyl]dicarbonyl(cyclopentadienyl)metal, {CpM(CO)2[(CO)CRâ•€RPPh2]}. Organometallics, 2009, 28, 6827-6830.	1.1	9
110	A General Copper-Catalyzed Coupling of Azoles with Vinyl Bromides. Journal of Organic Chemistry, 2009, 74, 6371-6373.	1.7	59
111	Zr-promoted linear coupling of alkynes to generate bis(allene)s. Chemical Communications, 2009, , 6026.	2.2	13
112	CuCl-catalyzed aerobic oxidative reaction of primary aromatic amines. Tetrahedron Letters, 2008, 49, 4011-4015.	0.7	71
113	Palladaphosphacyclobutenes as catalysts in Heck and Suzuki reactions. Applied Organometallic Chemistry, 2008, 22, 341-345.	1.7	15
114	cis-Fashioned palladium (II) complexes of 2-phenylbenzimidazole ligands: Synthesis, characterization, and catalytic behavior towards Suzuki–Miyaura reaction. Journal of Organometallic Chemistry, 2008, 693, 3842-3846.	0.8	40
115	Synthesis and Characterization of Novel Four-Membered Palladacycles. Organometallics, 2008, 27, 152-154.	1.1	14
116	Cerium Salt Promoted Homocoupling Reaction of Dialkylanilines in Water. Chemical Research in Chinese Universities, 2008, 24, 226-230.	1.3	0
117	Regioselective Zirconophosphination of 1-Alkenes: A Versatile Route for the Synthesis of β-Functionalized Alkyldiphenylphosphine Oxides in the Presence of CuCl. Organometallics, 2008, 27, 3834-3839.	1.1	11
118	Ce(SO ₄) ₂ â€Mediated Nitration of <i>N,N</i> â€Dialkylanilines with NaNO ₂ in Water. Synthetic Communications, 2007, 37, 3381-3392.	1.1	6
119	Metallophosphination of Alkynes: Efficient Synthesis of β-Functionalized Alkenylphosphines. Organometallics, 2007, 26, 1084-1088.	1.1	16
120	2-Iminopyridylpalladium dichloride as highly active catalyst for the Heck reaction. Applied Organometallic Chemistry, 2007, 21, 641-644.	1.7	12
121	Zirconocene-promoted coupling reaction of terminal acetylenes to geminal enediynes in the presence of p-chloranil. Journal of Organometallic Chemistry, 2007, 692, 4612-4617.	0.8	13
122	Highly active Pd(II) catalysts with pyridylbenzoimidazole ligands for the Heck reaction. Journal of Organometallic Chemistry, 2007, 692, 4381-4388.	0.8	45
123	CuCl2-catalyzed One-pot Formation of Tetrahydroquinolines from N-Methyl-N-alkylanilines and Vinyl Ethers in the Presence of t-Butylhydroperoxide. Molecules, 2006, 11, 978-987.	1.7	10
124	Oxidative Coupling Reaction of N,Nâ€Dialkylanilines with Cerium(IV) Ammonium Nitrate in the Solid State. Synthetic Communications, 2006, 36, 2413-2419.	1.1	13
125	Generation of Benzocyclobutadiene Derivatives from Zirconaindene Derivatives. Journal of Organic Chemistry, 2006, 71, 5373-5376.	1.7	20
126	Cycloaddition Reaction of Zirconacyclopentadienes to Quinones:  Synthesis of Higher para-Quinones. Organic Letters, 2006, 8, 4055-4058.	2.4	19

#	Article	IF	CITATIONS
127	One-Pot Coupling of Two Alkynes and One Alkene for Formation of Cyclohexene Derivatives via Zirconacyclopentadienes. Bulletin of the Chemical Society of Japan, 2006, 79, 950-952.	2.0	7
128	Reaction of Zirconocene–Alkyne Complexes with Mo(CO)6. Chemistry Letters, 2006, 35, 122-123.	0.7	3
129	Metallo-phosphorylation of alkenes: a highly regioselective reaction of zirconocene–alkene complexes with chlorophosphate. Tetrahedron, 2006, 62, 6295-6302.	1.0	13
130	Palladium-Catalyzed Self-Coupling Reaction of Terminal Alkynes in the Presence of p-Chloranil: A Practical Method for the Synthesis of Triethynylethenes. Synlett, 2006, 2006, 2454-2458.	1.0	2
131	One-pot approach for the regioselective synthesis of β-keto sulfones based on acid-catalyzed reaction of sulfonyl chlorides with arylacetylenes and water. Tetrahedron Letters, 2005, 46, 513-515.	0.7	31
132	Remarkably efficient oxidative coupling of N,N-dialkylarylamines in water mediated by cerium(IV) ammonium nitrate. Tetrahedron Letters, 2005, 46, 3909-3911.	0.7	60
133	Regioselective nitration of N,N-dialkylanilines using cerium(IV) ammonium nitrate in acetonitrile. Tetrahedron Letters, 2005, 46, 8781-8783.	0.7	35
134	Intramolecular "CH··Àë€(Metal Chelate Ring) Interactions―as Structural Evidence for Metalloaromaticity in Bis(pyridine-2,6-diimine)RullComplexes. European Journal of Inorganic Chemistry, 2005, 2005, 1585-1588.	1.0	65
135	One-Pot Approach for the Regioselective Synthesis of ?-Keto Sulfones Based on Acid-Catalyzed Reaction of Sulfonyl Chlorides with Arylacetylenes and Water ChemInform, 2005, 36, no.	0.1	0
136	Pd-Catalyzed One-Pot Multicomponent Coupling Reaction for the Highly Regioselective Synthesis of Polysubstituted Benzenes ChemInform, 2005, 36, no.	0.1	0
137	A One-Pot Multicomponent Coupling Reaction for the Stereocontrolled Synthesis of Allyl-Substituted Cyclopropanes ChemInform, 2005, 36, no.	0.1	1
138	Remarkably Efficient Oxidative Coupling of N,N-Dialkylarylamines in Water Mediated by Cerium(IV) Ammonium Nitrate ChemInform, 2005, 36, no.	0.1	0
139	1,1-Cycloaddition of Oxalyl Dichloride with Dialkenylmetal Compounds: Formation of Cyclopentadienone Derivatives by the Reaction of 1,4-Dilithio-1,3-dienes or Zirconacyclopentadienes with Oxalyl Chloride in the Presence of CuCl ChemInform, 2005, 36, no.	0.1	0
140	A One-Pot Multicomponent Coupling Reaction for the Stereocontrolled Synthesis of Allyl-Substituted Cyclopropanes. Synlett, 2005, 2005, 0911-0914.	1.0	0
141	CuBr/H2O2-Mediated Oxidative Coupling ofN,N-Dialkylarylamines in ÂWater: A Practical Synthesis of Benzidine Derivatives. Synlett, 2005, 2005, 1381-1384.	1.0	1
142	1,1-Cycloaddition of Oxalyl Dichloride with Dialkenylmetal Compounds:Â Formation of Cyclopentadienone Derivatives by the Reaction of 1,4,-Dilithio-1,3-dienes or Zirconacyclopentadienes with Oxalyl Chloride in the Presence of CuCl. Journal of the American Chemical Society, 2005, 127, 8024-8025.	6.6	53
143	Pd-Catalyzed One-Pot Multicomponent Coupling Reaction for the Highly Regioselective Synthesis of Polysubstituted Benzenes. Organic Letters, 2005, 7, 347-349.	2.4	50
144	Acid-Promoted Reaction of Sulfonyl Chlorides with Alkenes: New Approach to the Regioselective Synthesis of β-Hydroxyl Sulfone Derivatives. Synlett, 2004, 2004, 1595-1597.	1.0	18

#	Article	IF	CITATIONS
145	A FACILE APPROACH FOR THE SYNTHESIS OF \hat{I}_{\pm} -HALOGENATED ALKYLIDENEDIPHOSPHONATES BY REACTION OF ALKYLLITHIUM WITH CHLOROPHOSPHATE AND HALOGEN REAGENT. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 449-455.	0.8	3
146	Coupling Reactions of 1,4-Dicuprio-1,3-dienes: Formation of Carbocycles. European Journal of Organic Chemistry, 2004, 2004, 647-650.	1.2	31
147	Metallo-phosphorylation of Alkynes: Reaction of Alkynes with Cp2Zr(1-butene)(PR3) and Chlorophosphate ChemInform, 2004, 35, no.	0.1	0
148	Effect of Lithium Chloride on Allylation of Zirconacyclopentadienes ChemInform, 2004, 35, no.	0.1	0
149	Coupling Reactions of 1,4-Dicuprio-1,3-dienes: Formation of Carbocycles ChemInform, 2004, 35, no.	0.1	0
150	Michael Addition Reactions of Grignard Reagents to 2-Halogenoacrylates: A Convenient Method for the Synthesis of Polysubstituted Cyclopropane Compounds ChemInform, 2004, 35, no.	0.1	0
151	Acid-Promoted Reaction of Sulfonyl Chlorides with Alkenes: New Approach to the Regioselective Synthesis of β-Hydroxyl Sulfone Derivatives ChemInform, 2004, 35, no.	0.1	0
152	Effect of lithium chloride on allylation of zirconacyclopentadienes. Tetrahedron Letters, 2004, 45, 595-598.	0.7	11
153	Michael addition reactions of Grignard reagents to 2-halogenoacrylates: a convenient method for the synthesis of polysubstituted cyclopropane compounds. Tetrahedron Letters, 2004, 45, 6067-6069.	0.7	11
154	Synthesis of molybdenum complex with novel P(OH)3 ligand based on the one-pot reaction of Mo(CO)6with HP(O)(OEt)2 and water. Inorganic Chemistry Communication, 2004, 7, 1202-1204.	1.8	9
155	Dianionic Cycloaddition of Decatetraenes with RCOX Forming Nine-Membered Carbocycles ChemInform, 2003, 34, no.	0.1	2
156	Polymer precursor to diamondlike carbon prepared by the polymerization of ?,?,?-trichlorotoluene and acetonitrile. Journal of Applied Polymer Science, 2003, 89, 16-23.	1.3	1
157	Reaction of Cp2ZrR2 with M(CO)6 (M=Mo, W): Cp transfer from dialkylzirconocenes to molybdenum or tungsten carbonyl complexes. Inorganic Chemistry Communication, 2003, 6, 210-212.	1.8	2
158	Metallo-phosphorylation of alkynes: reaction of alkynes with Cp2Zr(1-butene)(PR3) and chlorophosphateElectronic supplementary information (ESI) available: experimental procedures and NMR data. See http://www.rsc.org/suppdata/cc/b3/b308595c/. Chemical Communications, 2003, , 2736.	2.2	19
159	Dianionic Cycloaddition of Decatetraenes with RCOX Forming Nine-Membered Carbocycles. Synlett, 2003, 2003, 0183-0186.	1.0	0
160	Self-assembly of dinuclear M2Cl4(C13H9N3)2: stepwise supramolecular array by π–π stacking. Inorganic Chemistry Communication, 2002, 5, 667-670.	1.8	13
161	Grignard reagent mediated reaction of Cp2Zr(ii)–ethylene complex with imines. Chemical Communications, 2001, , 31-32.	2.2	8
162	Metallo-phosphorylation of olefins: reaction of diethyl chlorophosphate with zirconocene–ethylene complexElectronic supplementary data available: experimental procedure and NMR data. See http://www.rsc.org/suppdata/cc/b1/b107755d/. Chemical Communications, 2001, , 2554-2555.	2.2	9

CHANJUAN XI

#	Article	IF	CITATIONS
163	Metallo-Esterification of Alkynes:Â Reaction of Alkynes with Cp2ZrEt2and Chloroformate. Journal of the American Chemical Society, 2000, 122, 3228-3229.	6.6	61
164	Reaction of Zirconacycles with 3-lodopropenoates and 3-lodocycloenones in the Presence of CuCl:Â A New Pathway for the Formation of Cyclopentadienes and Spirocyclic Compounds. Journal of Organic Chemistry, 2000, 65, 945-950.	1.7	36
165	Preparation of Diynes via Selective Bisalkynylation of Zirconacycles. Journal of Organic Chemistry, 2000, 65, 6951-6957.	1.7	26
166	Reaction of oxazirconacyclopentenes with propynoates. A new pathway for the formation of 2,5-dihydrofuran derivatives. Tetrahedron Letters, 1999, 40, 2375-2378.	0.7	31
167	Selective one carbon-carbon bond formation reaction of zirconacyclopentadienes with aryl iodides or alkynyl iodides. Tetrahedron, 1998, 54, 715-726.	1.0	48
168	Cross coupling-conjugate addition reaction of zirconacyclopentadienes with 3-iodopropenoates. Tetrahedron Letters, 1998, 39, 4321-4324.	0.7	50
169	Selective Intermolecular Coupling of Alkynes with Nitriles and Ketones via β,βâ€~ Carbonâ^'Carbon Bond Cleavage of Zirconacyclopentenes. Journal of Organic Chemistry, 1998, 63, 6802-6806.	1.7	90
170	1,1-Cycloaddition of zirconacyclopentadienes to propynoates. Chemical Communications, 1997, , 2069-2070.	2.2	28
171	Intermolecular Coupling Reaction of Alkynes with Vinyl Bromide with Selective Skeletal Rearrangement. Journal of the American Chemical Society, 1997, 119, 4561-4562.	6.6	45
172	Remarkable effect of copper chloride on diiodination of zirconacyclopentadienes. Tetrahedron Letters, 1997, 38, 4099-4102.	0.7	110
173	Substituent-Dependent Selective Replacement of Alkyne Moieties of ZirconacyclopentadienesviaC-C Bond Cleavage Reaction. Chemistry Letters, 1996, 25, 1003-1004.	0.7	21
174	Preparation of 1,2,3-trisubstituted cyclopentadienes and tetrahydroindene derivatives from zirconacyclopentenes. Tetrahedron Letters, 1996, 37, 7521-7524.	0.7	45
175	Effects of H+, Clâ^' and CH3COOH on the photocatalytic conversion of PtCl62â^' in aqueous TiO2 dispersion. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87, 249-255.	2.0	31
176	On the conditions and mechanism of PtO2 formation in the photoinduced conversion of H2PtCl6. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 81, 177-182.	2.0	47
177	Surface properties of Ptî—,CdS and mechanism of photocatalytic dehydrogenation of aqueous alcohol. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 71, 85-96.	2.0	41