Karin Przyklenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990176/publications.pdf Version: 2024-02-01

KADIN DOZVKIENK

#	Article	IF	CITATIONS
1	Parathyroid Hormone-Related Peptide and Its Analog, Abaloparatide, Attenuate Lethal Myocardial Ischemia-Reperfusion Injury. Journal of Clinical Medicine, 2022, 11, 2273.	1.0	2
2	Machine learning-based classification of mitochondrial morphology in primary neurons and brain. Scientific Reports, 2021, 11, 5133.	1.6	19
3	Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons. Cell Death and Disease, 2021, 12, 475.	2.7	17
4	Non-invasive treatment with near-infrared light: A novel mechanisms-based strategy that evokes sustained reduction in brain injury after stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 833-844.	2.4	21
5	Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells, 2020, 9, 214.	1.8	46
6	Myocardial Ischemiaâ€Reperfusion Injury: Does Disruption of Mitochondrial Cristae Integrity Play a Requisite Mechanistic Role?. FASEB Journal, 2020, 34, 1-1.	0.2	0
7	Journal of Cardiovascular Pharmacology and Therapeutics: Expanding the Legacy. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 303-303.	1.0	0
8	lschaemic and hypoxic conditioning: potential for protection of vital organs. Experimental Physiology, 2019, 104, 278-294.	0.9	56
9	Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Scientific Reports, 2018, 8, 3481.	1.6	62
10	Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication. Basic Research in Cardiology, 2018, 113, 16.	2.5	47
11	Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Molecular Neurobiology, 2018, 55, 2547-2564.	1.9	269
12	GLS-409, an Antagonist of Both P2Y1 and P2Y12, Potently Inhibits Canine Coronary Artery Thrombosis and Reversibly Inhibits Human Platelet Activation. Scientific Reports, 2018, 8, 14529.	1.6	5
13	Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H812-H838.	1.5	372
14	Utility of point of care assessment of platelet reactivity (using the PFA-100®) to aid in diagnosis of stroke. American Journal of Emergency Medicine, 2017, 35, 802.e1-802.e5.	0.7	2
15	Parathyroid Hormone–Related Peptide. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 529-537.	1.0	3
16	The Future of Remote Ischemic Conditioning. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 295-296.	1.0	4
17	Examining self-reported and biological stress and near misses among Emergency Medicine residents: a single-centre cross-sectional assessment in the USA. BMJ Open, 2017, 7, e016479.	0.8	17
18	Ischemic Conditioning Attenuates Platelet-Mediated Thrombosis. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 391-396.	1.0	10

#	Article	IF	CITATIONS
19	GLS-409, a Synergistic Inhibitor of Both P2Y1 and P2Y12: Efficacy in a Canine Model of Recurrent Coronary Thrombosis and Reversibility of Human Platelet Inhibition. Blood, 2017, 130, 630-630.	0.6	1
20	Remote Ischemic Conditioning and the Long Road to Clinical Translation. Circulation Research, 2016, 118, 1052-1054.	2.0	26
21	Mitochondrial dynamics following global cerebral ischemia. Molecular and Cellular Neurosciences, 2016, 76, 68-75.	1.0	72
22	Inhibition of mitochondrial fission as a molecular target for cardioprotection: critical importance of the timing of treatment. Basic Research in Cardiology, 2016, 111, 59.	2.5	49
23	Ischaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	2.5	257
24	Synergistic Inhibition of Both P2Y ₁ and P2Y ₁₂ Adenosine Diphosphate Receptors As Novel Approach to Rapidly Attenuate Platelet-Mediated Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 501-509.	1.1	49
25	Remote Ischemic Conditioning. Journal of the American College of Cardiology, 2015, 65, 177-195.	1.2	507
26	Ischaemic conditioning: pitfalls on the path to clinical translation. British Journal of Pharmacology, 2015, 172, 1961-1973.	2.7	34
27	Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine–cardiovascular interaction. Biochemical and Biophysical Research Communications, 2015, 468, 202-207.	1.0	9
28	From Ischemic Conditioning to â€~Hyperconditioning': Clinical Phenomenon and Basic Science Opportunity. Dose-Response, 2014, 12, dose-response.1.	0.7	41
29	Role of extracellular vesicles in remote ischemic preconditioning: â€~Good things come in small packages'?. Journal of Molecular and Cellular Cardiology, 2014, 69, 83-84.	0.9	5
30	Clinical Benefits of Remote Ischemic Preconditioning. Circulation Research, 2014, 114, 748-750.	2.0	3
31	microRNA-144: the â€~what' and â€~how' of remote ischemic conditioning?. Basic Research in Cardiology, 2014, 109, 429.	2.5	10
32	Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovascular Diagnosis and Therapy, 2014, 4, 383-96.	0.7	30
33	Myocardial Conditioning. Circulation Research, 2013, 113, 439-450.	2.0	100
34	Molecular Mechanisms of Ischemia–Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation. Molecular Neurobiology, 2013, 47, 9-23.	1.9	511
35	Reduction of Myocardial Infarct Size with Ischemic "Conditioning― Anesthesia and Analgesia, 2013, 117, 891-901.	1.1	68
36	Genesis of remote conditioning. Journal of Cardiovascular Medicine, 2013, 14, 180-186.	0.6	26

#	Article	IF	CITATIONS
37	Mitochondrial Dynamics: An Emerging Paradigm in Ischemia-Reperfusion Injury. Current Pharmaceutical Design, 2013, 19, 6848-6857.	0.9	47
38	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
39	Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovascular Research, 2012, 94, 197-205.	1.8	116
40	Cardioprotection with Postconditioning: Loss of Efficacy in Murine Models of Type-2 and Type-1 Diabetes. Antioxidants and Redox Signaling, 2011, 14, 781-790.	2.5	113
41	Efficacy of Cardioprotective â€ [~] Conditioning' Strategies in Aging and Diabetic Cohorts. Drugs and Aging, 2011, 28, 331-343.	1.3	70
42	Acute induction of autophagy as a novel strategy for cardioprotection. Autophagy, 2011, 7, 432-433.	4.3	49
43	Remote Ischemic Preconditioning: Current Knowledge, Unresolved Questions, and Future Priorities. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 255-259.	1.0	115
44	Review: Autophagy: Definition, Molecular Machinery, and Potential Role in Myocardial Ischemia-Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 15, 220-230.	1.0	101
45	Profound Cardioprotection With Chloramphenicol Succinate in the Swine Model of Myocardial Ischemia-Reperfusion Injury. Circulation, 2010, 122, S179-84.	1.6	132
46	Fibrin architecture in clots: A quantitative polarized light microscopy analysisâ~†. Blood Cells, Molecules, and Diseases, 2009, 42, 51-56.	0.6	40
47	Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Journal of Bioenergetics and Biomembranes, 2008, 40, 445-456.	1.0	204
48	Aging Mouse Hearts Are Refractory to Infarct Size Reduction With Post-Conditioning. Journal of the American College of Cardiology, 2008, 51, 1393-1398.	1.2	123
49	Effect of adenosine A2 receptor stimulation on platelet activation–aggregation: Differences between canine and human models. Thrombosis Research, 2008, 121, 689-698.	0.8	30
50	Adaptation of a photochemical method to initiate recurrent platelet-mediated thrombosis in small animals. Lasers in Medical Science, 2007, 22, 42-45.	1.0	16
51	First molecular evidence that inositol trisphosphate signaling contributes to infarct size reduction with preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2008-H2012.	1.5	8
52	Reduction of infarct size with d-myo-inositol trisphosphate: role of PI3-kinase and mitochondrial KATP channels. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H830-H836.	1.5	7
53	Cardioprotection with adenosine: â€~a riddle wrapped in a mystery'. British Journal of Pharmacology, 2005, 145, 699-700.	2.7	6
54	In Vitro Platelet Responsiveness to Adenosine-Mediated â€~Preconditioning' is Age-Dependent. Journal of Thrombosis and Thrombolysis, 2005, 19, 5-10.	1.0	8

#	Article	IF	CITATIONS
55	Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1618-H1626.	1.5	180
56	Pretreatment with d-myo-Inositol Trisphosphate Reduces Infarct Size in Rabbit Hearts: Role of Inositol Trisphosphate Receptors and Gap Junctions in Triggering Protection. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1386-1392.	1.3	22
57	Detection and Mechanisms of GPIIb-IIIa Antagonist Induced Thrombocytopenia: Role for Antibody Induced Platelet Activation Blood, 2005, 106, 1654-1654.	0.6	0
58	Patients with Coronary Artery Disease Have an Increased Incidence of Aspirin Resistance: Association of PFA-100 Closure Time with Clinical Findings Blood, 2004, 104, 1859-1859.	0.6	10
59	Cardioprotection â€~Outside the Box'. Basic Research in Cardiology, 2003, 98, 149-157.	2.5	99
60	Mechanisms of myocardial ischemic preconditioning are age related: PKC-ïµ does not play a requisite role in old rabbits. Journal of Applied Physiology, 2003, 95, 2563-2569.	1.2	39
61	Delta Opiates Increase Ischemic Tolerance in Isolated Rabbit Jejunum. Academic Emergency Medicine, 2002, 9, 555-560.	0.8	8
62	"Preconditioning at a Distance" in the Isolated Rabbit Heart. Academic Emergency Medicine, 2000, 7, 311-317.	0.8	33
63	Brief Antecedent Ischemia Enhances Recombinant Tissue Plasminogen Activator–Induced Coronary Thrombolysis by Adenosine-Mediated Mechanism. Circulation, 2000, 102, 88-95.	1.6	60
64	Rabbit heart can be "preconditioned―via transfer of coronary effluent. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2451-H2457.	1.5	101
65	Pharmacological manipulation of Ins(1,4,5)P3 signaling mimics preconditioning in rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2458-H2469.	1.5	30
66	Brief Myocardial Ischemia Attenuates Platelet Thrombosis in Remote, Damaged, and Stenotic Carotid Arteries. Circulation, 1999, 100, 843-848.	1.6	17
67	Cellular Mechanisms of Infarct Size Reduction with Ischemic Preconditioning: Role of Calcium?. Annals of the New York Academy of Sciences, 1999, 874, 192-210.	1.8	29
68	Protection Conferred by Preinfarct Angina is Manifest in the Aged Heart: Evidence from the TIMI 4 Trial. Journal of Thrombosis and Thrombolysis, 1998, 6, 89-92.	1.0	48
69	Targeted Coronary Thrombolysis via "Pericardial" Administration of Lytic Agents?. Journal of Thrombosis and Thrombolysis, 1998, 6, 83-88.	1.0	1
70	Ischemic preconditioning: Exploring the paradox. Progress in Cardiovascular Diseases, 1998, 40, 517-547.	1.6	156
71	Brief Antecedent Ischemia Attenuates Platelet-Mediated Thrombosis in Damaged and Stenotic Canine Coronary Arteries. Circulation, 1998, 97, 692-702.	1.6	61
72	Clinical evidence that nisoldipine attenuates stunning in patients post infarction. , 1997, 11, 17-18.		2

Clinical evidence that nisoldipine attenuates stunning in patients post infarction., 1997, 11, 17-18. 72

#	Article	IF	CITATIONS
73	ls Calcium a Mediator of Infarct Size Reduction With Preconditioning in Canine Myocardium?. Circulation, 1997, 96, 1305-1312.	1.6	39
74	Editorial: Oxygen radical scavengers as adjuvant therapy for coronary reperfusion. Journal of Thrombosis and Thrombolysis, 1996, 3, 35.	1.0	2
75	Intramyocardial Injections and Protection Against Myocardial Ischemia. Circulation, 1996, 93, 2043-2051.	1.6	27
76	Clinical Aspects of Preconditioning and Implications for the Cardiac Surgeon. Journal of Cardiac Surgery, 1995, 10, 369-375.	0.3	5
77	Low-Dose IV Acetylcholine Acts As a "Preconditioning-Mimetic" in the Canine Model. Journal of Cardiac Surgery, 1995, 10, 389-395.	0.3	14
78	Previous Angina Alters In-Hospital Outcome in TIMI 4. Circulation, 1995, 91, 37-45.	1.6	448
79	Does Ischemic Preconditioning Trigger Translocation of Protein Kinase C in the Canine Model?. Circulation, 1995, 92, 1546-1557.	1.6	102
80	Stunned Myocardium Following Prolonged Cardiopulmonary Bypass: Effect of Warm versus Cold Cardioplegia in the Canine Model. Journal of Cardiac Surgery, 1994, 9, 506-516.	0.3	10
81	Clinical Evidence for Stunned Myocardium After Coronary Artery Bypass Surgery. Journal of Cardiac Surgery, 1994, 9, 397-402.	0.3	74
82	Understanding the jargon: a glossary of terms used (and misused) in the study of ischaemia and reperfusion. Cardiovascular Research, 1993, 27, 162-166.	1.8	2