Zhibiao Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6990152/publications.pdf

Version: 2024-02-01

75 4,442 32 63
papers citations h-index g-index

75 75 75 4909

times ranked

docs citations

all docs

citing authors

#	Article	IF	CITATIONS
1	Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46, 1220-1226.	21.4	801
2	Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9897-9902.	7.1	413
3	An InDel in the Promoter of <i>Al-ACTIVATED MALATE TRANSPORTER9</i> Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance. Plant Cell, 2017, 29, 2249-2268.	6.6	207
4	Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the $\langle i \rangle$ mutant. FEBS Letters, 2011, 585, 435-439.	2.8	174
5	Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences, 2013, 70, 1937-1948.	5.4	163
6	Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science, 2015, 231, 198-211.	3.6	153
7	A STAYâ€GREEN protein <scp>S</scp> l <scp>SGR</scp> 1 regulates lycopene and βâ€carotene accumulation by interacting directly with <scp>S</scp> l <scp>PSY</scp> 1 during ripening processes in tomato. New Phytologist, 2013, 198, 442-452.	7.3	149
8	A tomato Bâ€box protein <i>Sl</i> <scp>BBX</scp> 20 modulates carotenoid biosynthesis by directly activating <i><scp>PHYTOENE SYNTHASE</scp>Â1</i> , and is targeted for 26S proteasomeâ€mediated degradation. New Phytologist, 2019, 221, 279-294.	7.3	127
9	The tomato <scp>HD</scp> â€Zip I transcription factor Sl <scp>HZ</scp> 24 modulates ascorbate accumulation through positive regulation of the <scp>d</scp> â€mannose/ <scp>l</scp> â€galactose pathway. Plant Journal, 2016, 85, 16-29.	5.7	116
10	Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. Journal of Experimental Botany, 2014, 65, 3005-3014.	4.8	113
11	Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Scientific Reports, 2017, 7, 12087.	3.3	97
12	<i>Hair</i> , encoding a single C2H2 zincâ€finger protein, regulates multicellular trichome formation in tomato. Plant Journal, 2018, 96, 90-102.	5.7	97
13	Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Scientific Reports, 2016, 6, 31772.	3.3	95
14	Differential Modulation of Photosynthesis, Signaling, and Transcriptional Regulation between Tolerant and Sensitive Tomato Genotypes under Cold Stress. PLoS ONE, 2012, 7, e50785.	2.5	91
15	Expression and diversification analysis reveals transposable elements play important roles in the origin of <scp>L</scp> ycopersiconâ€specific lnc <scp>RNA</scp> s in tomato. New Phytologist, 2016, 209, 1442-1455.	7.3	87
16	The C2H2 zincâ€finger protein Sl <scp>ZF</scp> 3 regulates AsA synthesis and salt tolerance by interacting with <scp>CSN</scp> 5B. Plant Biotechnology Journal, 2018, 16, 1201-1213.	8.3	82
17	Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiology and Biochemistry, 2016, 102, 167-179.	5. 8	73
18	Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis. PLoS ONE, 2015, 10, e0130885.	2.5	72

#	Article	IF	Citations
19	The tomato B-type cyclin gene, SlCycB2, plays key roles in reproductive organ development, trichome initiation, terpenoids biosynthesis and Prodenia litura defense. Plant Science, 2017, 262, 103-114.	3.6	71
20	Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genetics, 2019, 15, e1008149.	3.5	66
21	ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. Plant Science, 2018, 270, 140-149.	3.6	58
22	<i>SI</i> <scp>NAC</scp> 1, a stressâ€related transcription factor, is fineâ€tuned on both the transcriptional and the postâ€translational level. New Phytologist, 2013, 197, 1214-1224.	7. 3	55
23	miR156aâ€ŧargeted SBPâ€Box transcription factor SISPL13 regulates inflorescence morphogenesis by directly activating <i>SFT</i> in tomato. Plant Biotechnology Journal, 2020, 18, 1670-1682.	8.3	51
24	The transcription factor SIDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications, 2016, 474, 736-741.	2.1	48
25	Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. Biochemical and Biophysical Research Communications, 2015, 468, 653-659.	2.1	46
26	WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating <i>CER6</i> expression in tomato. Plant Journal, 2020, 103, 323-337.	5.7	44
27	<i>HOMEODOMAIN PROTEIN8</i> mediates jasmonateâ€triggered trichome elongation in tomato. New Phytologist, 2021, 230, 1063-1077.	7.3	43
28	Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wo ν gene in tobacco. BMC Genomics, 2015, 16, 868.	2.8	42
29	Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21, 284.	2.8	39
30	Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites. Plant Science, 2018, 271, 9-19.	3.6	37
31	<i>GREEN STRIPE</i> , encoding methylated TOMATO AGAMOUSâ€LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytologist, 2020, 228, 302-317.	7.3	36
32	NFâ€Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytologist, 2021, 229, 3237-3252.	7.3	36
33	Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regulation, 2015, 76, 187-197.	3.4	35
34	An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato. Frontiers in Plant Science, 2016, 07, 1305.	3.6	35
35	Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica, 2013, 193, 135-145.	1.2	30
36	Silencing <i>GRAS2</i> reduces fruit weight in tomato. Journal of Integrative Plant Biology, 2018, 60, 498-513.	8.5	29

#	Article	IF	CITATIONS
37	Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato. Plant Physiology and Biochemistry, 2015, 96, 141-153.	5.8	27
38	SIBBX20 interacts with the COP9 signalosome subunit SICSN5-2 to regulate anthocyanin biosynthesis by activating SIDFR expression in tomato. Horticulture Research, 2021, 8, 163.	6.3	27
39	Fine-mapping of the woolly gene controlling multicellular trichome formation and embryonic development in tomato. Theoretical and Applied Genetics, 2011, 123, 625-633.	3.6	26
40	Genome-wide classification and expression analysis of nucleobase–ascorbate transporter (NAT) gene family in tomato. Plant Growth Regulation, 2014, 73, 19-30.	3.4	26
41	HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato. Frontiers in Plant Science, 2016, 7, 967.	3.6	26
42	Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. Journal of Genetics and Genomics, 2019, 46, 505-508.	3.9	26
43	SIRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research, 2021, 8, 128.	6.3	22
44	Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var.) Tj ETQq0 0 0 rgB	Γ/Oyerlock	2 10 Tf 50 462
45	The HD-Zip IV transcription factor SIHDZIV8 controls multicellular trichome morphology by regulating the expression of <i>Hairless-2</i> Journal of Experimental Botany, 2020, 71, 7132-7145.	4.8	20
46	MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs. Journal of Experimental Botany, 2021, 72, 1677-1690.	4.8	20
47	A CCAAT-binding factor, SINFYA10, negatively regulates ascorbate accumulation by modulating the d-mannose/l-galactose pathway in tomato. Horticulture Research, 2020, 7, 200.	6.3	19
48	Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato. Journal of Experimental Botany, 2015, 66, 1413-1426.	4.8	18
49	Knockdown of SINL33 accumulates ascorbate, enhances disease and oxidative stress tolerance in tomato (Solanum lycopersicum). Plant Growth Regulation, 2019, 89, 49-58.	3.4	18
50	Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiology, 2021, 186, 2078-2092.	4.8	18
51	Hair interacts with SIZFP8-like to regulate the initiation and elongation of trichomes by modulating <i>SIZFP6</i> expression in tomato. Journal of Experimental Botany, 2022, 73, 228-244.	4.8	18
52	An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. Journal of Experimental Botany, 2020, 71, 2527-2536.	4.8	17
53	UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. Plant Science, 2020, 297, 110523.	3.6	16
54	Transcriptomic and functional analyses uncover the regulatory role of lncRNA000170 in tomato multicellular trichome formation. Plant Journal, 2020, 104, 18-29.	5.7	16

#	Article	IF	CITATIONS
55	A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell, 2021, 33, 3293-3308.	6.6	15
56	Fine mapping of the dialytic gene that controls multicellular trichome formation and stamen development in tomato. Theoretical and Applied Genetics, 2016, 129, 1531-1539.	3.6	14
57	Ascorbic Acid Accumulation is Transcriptionally Modulated in High-Pigment-1 Tomato Fruit. Plant Molecular Biology Reporter, 2014, 32, 52-61.	1.8	13
58	Tomato methionine sulfoxide reductase B2 functions in drought tolerance by promoting ROS scavenging and chlorophyll accumulation through interaction with Catalase 2 and RBCS3B. Plant Science, 2022, 318, 111206.	3.6	13
59	Overexpression of SIRBZ Results in Chlorosis and Dwarfism through Impairing Chlorophyll, Carotenoid, and Gibberellin Biosynthesis in Tomato. Frontiers in Plant Science, 2016, 7, 907.	3.6	12
60	Tomato SD1, encoding a kinase-interacting protein, is a major locus controlling stem development. Journal of Experimental Botany, 2020, 71, 3575-3587.	4.8	12
61	Identification and Expression Pattern of a ZPR1 Gene in Wild Tomato (Solanum Pennellii). Plant Molecular Biology Reporter, 2013, 31, 409-417.	1.8	9
62	Fine mapping of BoGL1, a gene controlling the glossy green trait in cabbage (Brassica oleracea L. Var.) Tj ETQq0	0 0 rgBT /	Ovgrlock 10 T
63	The tomato WV gene encoding a thioredoxin protein is essential for chloroplast development at low temperature and high light intensity. BMC Plant Biology, 2019, 19, 265.	3.6	8
64	Interactions between ShPP2-1, an F-box family gene, and ACR11A regulate cold tolerance of tomato. Horticulture Research, 2021, 8, 148.	6.3	7
65	The loss of function of HEL, which encodes a cellulose synthase interactive protein, causes helical and vine-like growth of tomato. Horticulture Research, 2020, 7, 180.	6.3	6
66	The chaperonin 60 protein SICpn60 $\hat{l}\pm1$ modulates photosynthesis and photorespiration in tomato. Journal of Experimental Botany, 2020, 71, 7224-7240.	4.8	6
67	Tomato LrgB regulates heat tolerance and the assimilation and partitioning of carbon. Plant Science, 2018, 274, 309-319.	3.6	5
68	NDW, encoding a receptor-like protein kinase, regulates plant growth, cold tolerance and susceptibility to Botrytis cinerea in tomato. Plant Science, 2020, 301, 110684.	3.6	5
69	A novel negative-stranded RNA virus of the order Bunyavirales identified in Brassica campestris L. ssp. chinensis. Archives of Virology, 2021, 166, 1525-1528.	2.1	5
70	Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wo v gene in tobacco. Genomics Data, 2015, 6, 173-174.	1.3	4
71	Development of a highly specific co-dominant marker for genotyping the Ph-3 (tomato late blight) Tj ETQq1 1 0	.784314 rş 2.1	gBT ₄ /Overlock
72	Methylation profiling of biosynthetic genes reveals the role of D-galacturonic acid reductase in ascorbic acid accumulation in tomato fruit. Plant Growth Regulation, 2022, 98, 281-288.	3.4	2

Zнівіао **Y**е

#	Article	IF	CITATIONS
73	VG, encoding a thylakoid formation protein, regulates the formation of variegated leaves in tomato. Horticultural Plant Journal, 2023, 9, 98-108.	5.0	1
74	Critical Roles of Mitochondrial Fatty Acid Synthesis in Tomato Development and Environmental Response. Plant Physiology, 0, , .	4.8	1
75	Regulation of invertase and sucrose for improving tomato fruit flavor: A review. Vegetable Research, 2021, 1, 1-13.	0.7	0