List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6989964/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Fault Zones. Pure and Applied Geophysics, 2003, 160, 677-715.	1.9	493
2	Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research, 2000, 105, 23765-23789.	3.3	482
3	Collective behavior of earthquakes and faults: Continuumâ€discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 2008, 46, .	23.0	387
4	Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 1997, 102, 553-571.	3.3	349
5	Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches. Physical Review Letters, 2009, 102, 175501.	7.8	282
6	Dynamic ruptures in recent models of earthquake faults. Journal of the Mechanics and Physics of Solids, 2001, 49, 2209-2244.	4.8	271
7	Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research: Solid Earth, 2013, 118, 2847-2864.	3.4	268
8	Distributed damage, faulting, and friction. Journal of Geophysical Research, 1997, 102, 27635-27649.	3.3	255
9	Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 2008, 173, 674-692.	2.4	245
10	Statistics of Earthquakes in Simple Models of Heterogeneous Faults. Physical Review Letters, 1997, 78, 4885-4888.	7.8	244
11	Earthquake failure sequences along a cellular fault zone in a threeâ€dimensional elastic solid containing asperity and nonasperity regions. Journal of Geophysical Research, 1993, 98, 14109-14131.	3.3	243
12	A simple analytic theory for the statistics of avalanches in sheared granular materials. Nature Physics, 2011, 7, 554-557.	16.7	226
13	Temporal Changes of Shallow Seismic Velocity Around the Karadere-Düzce Branch of the North Anatolian Fault and Strong Ground Motion. Pure and Applied Geophysics, 2006, 163, 567-600.	1.9	220
14	A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey. Geophysical Journal International, 2003, 152, 699-717.	2.4	217
15	Slip complexity in earthquake fault models Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3811-3818.	7.1	213
16	Dynamic simulations of slip on a smooth fault in an elastic solid. Journal of Geophysical Research, 1997, 102, 17771-17784.	3.3	209
17	Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk. Earth and Planetary Science Letters, 2005, 236, 486-496.	4.4	207
18	Slip patterns and earthquake populations along different classes of faults in elastic solids. Journal of Geophysical Research, 1995, 100, 12959-12983.	3.3	202

#	Article	IF	CITATIONS
19	Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 2006, 245, 642-654.	4.4	202
20	Geological Observations of Damage Asymmetry in the Structure of the San Jacinto, San Andreas and Punchbowl Faults in Southern California: A Possible Indicator for Preferred Rupture Propagation Direction. Pure and Applied Geophysics, 2006, 163, 301-349.	1.9	173
21	Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan. Earth and Planetary Science Letters, 2011, 308, 284-297.	4.4	165
22	Dynamic rupture on a bimaterial interface governed by slip-weakening friction. Geophysical Journal International, 2006, 165, 469-484.	2.4	161
23	Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology. Geophysical Journal International, 2006, 165, 197-210.	2.4	151
24	Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults. Pure and Applied Geophysics, 2002, 159, 2385-2412.	1.9	150
25	Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. Journal of Geophysical Research, 2001, 106, 4103-4120.	3.3	143
26	Properties and implications of dynamic rupture along a material interface. Bulletin of the Seismological Society of America, 1998, 88, 1085-1094.	2.3	140
27	Properties of seismic fault zone waves and their utility for imaging low-velocity structures. Journal of Geophysical Research, 1998, 103, 12567-12585.	3.3	139
28	Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: evidence for a shallow trapping structure. Geophysical Journal International, 2003, 155, 1021-1041.	2.4	137
29	Seismic velocity structures in the southern California plate-boundary environment from double-difference tomography. Geophysical Journal International, 2012, 190, 1181-1196.	2.4	137
30	Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophysical Journal International, 2005, 162, 867-881.	2.4	133
31	San Andreas Fault Zone Head Waves Near Parkfield, California. Science, 1991, 251, 1592-1594.	12.6	131
32	Seismic radiation from an <i>SH</i> line source in a laterally heterogeneous planar fault zone. Bulletin of the Seismological Society of America, 1990, 80, 971-994.	2.3	131
33	Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 2013, 194, 839-843.	2.4	130
34	Stress, slip, and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations. Journal of Geophysical Research, 1996, 101, 5677-5706.	3.3	127
35	Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault. Geophysical Journal International, 2004, 159, 253-274.	2.4	126
36	Self-driven mode switching of earthquake activity on a fault system. Earth and Planetary Science Letters, 1999, 172, 11-21.	4.4	115

#	Article	IF	CITATIONS
37	Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 2015, 202, 370-380.	2.4	115
38	Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure and Applied Geophysics, 2015, 172, 1007-1032.	1.9	112
39	Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 2014, 199, 368-381.	2.4	108
40	Gutenberg-Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Physical Review E, 1998, 58, 1494-1501.	2.1	107
41	Aftershocks driven by afterslip and fluid pressure sweeping through a faultâ€fracture mesh. Geophysical Research Letters, 2017, 44, 8260-8267.	4.0	106
42	Dynamic rupture on an interface between a compliant fault zone layer and a stiffer surrounding solid. Journal of Geophysical Research, 2002, 107, ESE 6-1.	3.3	104
43	A viscoelastic damage model with applications to stable and unstable fracturing. Geophysical Journal International, 2004, 159, 1155-1165.	2.4	103
44	A global classification and characterization of earthquake clusters. Geophysical Journal International, 2016, 207, 608-634.	2.4	103
45	Three-dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid. Journal of the Mechanics and Physics of Solids, 1994, 42, 813-843.	4.8	102
46	Earthquake clusters in southern California II: Classification and relation to physical properties of the crust. Journal of Geophysical Research: Solid Earth, 2013, 118, 2865-2877.	3.4	102
47	Interaction of the San Andreas Fault Creeping Segment with Adjacent great rupture zones and earthquake recurrence at Parkfield. Journal of Geophysical Research, 1993, 98, 2135-2144.	3.3	100
48	Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 2013, 118, 2813-2831.	3.4	100
49	Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999M7.4 İzmit andM7.1 Düzce, Turkey, earthquake sequences. Geophysical Journal International, 2005, 160, 1027-1043.	2.4	99
50	Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophysical Journal International, 2009, 176, 265-278.	2.4	99
51	Seismic radiation from regions sustaining material damage. Geophysical Journal International, 2009, 178, 1351-1356.	2.4	98
52	Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophysical Journal International, 2010, 183, 1579-1595.	2.4	96
53	Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. Journal of Geophysical Research, 2003, 108, .	3.3	95
54	Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. Pure and Applied Geophysics, 2009, 166, 1537-1573.	1.9	94

#	Article	IF	CITATIONS
55	Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 2017, 3, e1601946.	10.3	93
56	Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophysical Journal International, 2002, 148, F1-F5.	2.4	90
57	The response of two joined quarter spaces toSHline sources located at the material discontinuity interface. Geophysical Journal International, 1989, 98, 213-222.	2.4	89
58	A new algorithm for threeâ€dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research: Solid Earth, 2016, 121, 3557-3569.	3.4	89
59	Earthquake-induced transformation of the lower crust. Nature, 2018, 556, 487-491.	27.8	89
60	Geological and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: possible signals for preferred earthquake propagation direction. Geophysical Journal International, 2008, 173, 483-504.	2.4	88
61	Appendix 2 Key formulas in earthquake seismology. International Geophysics, 2003, , 1857-1875.	0.6	84
62	High-resolution imaging of the Bear Valley section of the San Andreas fault at seismogenic depths with fault-zone head waves and relocated seismicity. Geophysical Journal International, 2005, 163, 152-164.	2.4	84
63	Universal mean moment rate profiles of earthquake ruptures. Physical Review E, 2006, 73, 056104.	2.1	84
64	Mechanics of grainâ€size reduction in fault zones. Journal of Geophysical Research, 2008, 113, .	3.3	83
65	Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophysical Journal International, 2014, 198, 978-999.	2.4	82
66	Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics, 2016, 674, 147-165.	2.2	82
67	The generation of large earthquakes. Nature Reviews Earth & Environment, 2021, 2, 26-39.	29.7	79
68	Properties of dynamic rupture and energy partition in a solid with a frictional interface. Journal of the Mechanics and Physics of Solids, 2008, 56, 5-24.	4.8	78
69	A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 2016, 121, 8666-8687.	3.4	78
70	Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry. Geophysical Research Letters, 2019, 46, 9529-9536.	4.0	78
71	Seismicity on a fault controlled by rate- and state-dependent friction with spatial variations of the critical slip distance. Journal of Geophysical Research, 2006, 111, .	3.3	77
72	A non-local visco-elastic damage model and dynamic fracturing. Journal of the Mechanics and Physics of Solids, 2011, 59, 1752-1776.	4.8	75

#	Article	IF	CITATIONS
73	The response of two half spaces to point dislocations at the material interface. Geophysical Journal International, 1990, 101, 507-528.	2.4	74
74	Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophysical Journal International, 2015, 202, 920-932.	2.4	74
75	A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array. Geophysical Journal International, 2016, 206, 980-992.	2.4	74
76	High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics. Journal of Geophysical Research, 2007, 112, .	3.3	73
77	Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics. Pure and Applied Geophysics, 2009, 166, 1725-1746.	1.9	72
78	Assessment of <i>P</i> and <i>S</i> wave energy radiated from very small shearâ€ŧensile seismic events in a deep South African mine. Journal of Geophysical Research: Solid Earth, 2013, 118, 3630-3641.	3.4	72
79	Ground Motion Prediction Equations in the San Jacinto Fault Zone: Significant Effects of Rupture Directivity and Fault Zone Amplification. Pure and Applied Geophysics, 2014, 171, 3045-3081.	1.9	70
80	Thermoelastic strain in a half-space covered by unconsolidated material. Bulletin of the Seismological Society of America, 1986, 76, 1447-1460.	2.3	70
81	A three-dimensional fluid-controlled earthquake model: Behavior and implications. Journal of Geophysical Research, 1999, 104, 10621-10638.	3.3	66
82	Critical Evolution of Damage Toward Systemâ€Size Failure in Crystalline Rock. Journal of Geophysical Research: Solid Earth, 2018, 123, 1969-1986.	3.4	66
83	A viscoelastic damage rheology and rate- and state-dependent friction. Geophysical Journal International, 2005, 161, 179-190.	2.4	64
84	Statistical properties of seismicity of fault zones at different evolutionary stages. Geophysical Journal International, 2007, 169, 515-533.	2.4	64
85	Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophysical Journal International, 2008, 172, 651-662.	2.4	63
86	Seismic and Aseismic Preparatory Processes Before Large Stick–Slip Failure. Pure and Applied Geophysics, 2020, 177, 5741-5760.	1.9	63
87	Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and directParrivals. Geophysical Journal International, 2007, 169, 1028-1042.	2.4	61
88	Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience, 2019, 12, 387-392.	12.9	61
89	Joint inversion of fault zone head waves and direct P arrivals for crustal structure near major faults. Journal of Geophysical Research, 1992, 97, 1943-1951.	3.3	60
90	Simulation of SH- and P-SV-wave propagation in fault zones. Geophysical Journal International, 1997, 128, 533-546.	2.4	58

#	Article	IF	CITATIONS
91	Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophysical Journal International, 2019, 216, 896-905.	2.4	58
92	Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone. Bulletin of the Seismological Society of America, 1994, 84, 761-767.	2.3	58
93	On Quantification of the Earthquake Source. Seismological Research Letters, 2001, 72, 151-152.	1.9	56
94	Volumetric and shear processes in crystalline rock approaching faulting. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16234-16239.	7.1	56
95	Three-dimensional calculations of fault-zone-guided waves in various irregular structures. Geophysical Journal International, 2002, 151, 416-426.	2.4	55
96	Non-linear damage rheology and wave resonance in rocks. Geophysical Journal International, 2009, 178, 910-920.	2.4	54
97	Lowâ€velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. Journal of Geophysical Research: Solid Earth, 2014, 119, 8976-8990.	3.4	54
98	Characterization of Fault Zones. , 2003, , 677-715.		53
99	Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault. Geomorphology, 2009, 113, 82-96.	2.6	52
100	Examining tendencies of in-plane rupture to migrate to material interfaces. Geophysical Journal International, 2006, 167, 807-819.	2.4	51
101	Asymmetric distribution of aftershocks on large faults in California. Geophysical Journal International, 2011, 185, 1288-1304.	2.4	50
102	Toward reliable automated estimates of earthquake source properties from body wave spectra. Journal of Geophysical Research: Solid Earth, 2016, 121, 4390-4407.	3.4	50
103	Characteristics of Airplanes and Helicopters Recorded by a Dense Seismic Array Near Anza California. Journal of Geophysical Research: Solid Earth, 2018, 123, 4783-4797.	3.4	50
104	Numerical Simulation of Fault Zone Guided Waves: Accuracy and 3-D Effects. Pure and Applied Geophysics, 2002, 159, 2067-2083.	1.9	49
105	Evidence for a bimaterial interface along the Mudurnu segment of the North Anatolian Fault Zone from polarization analysis of P waves. Earth and Planetary Science Letters, 2012, 327-328, 17-22.	4.4	49
106	Earthquake Declustering Using the Nearestâ€Neighbor Approach in Spaceâ€Timeâ€Magnitude Domain. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB017120.	3.4	49
107	Correlations of Seismicity Patterns in Southern California with Surface Heat Flow Data. Bulletin of the Seismological Society of America, 2009, 99, 3114-3123.	2.3	48
108	Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion. Pure and Applied Geophysics, 2015, 172, 1243-1267.	1.9	48

#	Article	IF	CITATIONS
109	Dynamic earthquake rupture in the lower crust. Science Advances, 2019, 5, eaaw0913.	10.3	48
110	Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 2020, 223, 561-583.	2.4	47
111	Characteristics of Ground Motion Generated by Wind Interaction With Trees, Structures, and Other Surface Obstacles. Journal of Geophysical Research: Solid Earth, 2019, 124, 8519-8539.	3.4	46
112	Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophysical Journal International, 2010, 183, 433-450.	2.4	45
113	Seasonal variations of observed noise amplitudes at 2-18 Hz in southern California. Geophysical Journal International, 2011, 184, 860-868.	2.4	45
114	Characterization of pulverized granitoids in a shallow core along the San Andreas Fault, Littlerock, CA. Geophysical Journal International, 2011, 186, 401-417.	2.4	45
115	Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International, 2012, 188, 1255-1272.	2.4	45
116	Focal spot imaging based on zero lag crossâ€correlation amplitude fields: Application to dense array data at the San Jacinto fault zone. Journal of Geophysical Research: Solid Earth, 2016, 121, 8048-8067.	3.4	45
117	Guided Waves from Sources Outside Faults: An Indication for Shallow Fault Zone Structure?. Pure and Applied Geophysics, 2004, 161, 2125.	1.9	44
118	Variations of the velocity contrast and rupture properties of M6 earthquakes along the Parkfield section of the San Andreas fault. Geophysical Journal International, 2010, 180, 765-780.	2.4	44
119	Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays. Geophysical Journal International, 2018, 213, 98-114.	2.4	44
120	Evolving geometrical and material properties of fault zones in a damage rheology model. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	43
121	Seasonal thermoelastic strain and postseismic effects in Parkfield borehole dilatometers. Earth and Planetary Science Letters, 2013, 379, 120-126.	4.4	43
122	Analysis of earthquake body wave spectra for potency and magnitude values: implications for magnitude scaling relations. Geophysical Journal International, 2016, 207, 1158-1164.	2.4	43
123	Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method. Geophysical Journal International, 2015, 200, 1269-1280.	2.4	42
124	Episodic tremor and slip on a frictional interface with critical zero weakening in elastic solid. Geophysical Journal International, 2012, 189, 1159-1168.	2.4	41
125	Along-strike rupture directivity of earthquakes of the 2009 L'Aquila, central Italy, seismic sequence. Geophysical Journal International, 2015, 203, 399-415.	2.4	41
126	Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes. Geophysical Journal International, 2010, 182, 1567-1576.	2.4	40

#	Article	IF	CITATIONS
127	Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves. Tectonophysics, 2017, 721, 56-69.	2.2	40
128	Tomography of Southern California Via Bayesian Joint Inversion of Rayleigh Wave Ellipticity and Phase Velocity From Ambient Noise Crossâ€Correlations. Journal of Geophysical Research: Solid Earth, 2018, 123, 9933-9949.	3.4	40
129	Imaging subsurface structures in the San Jacinto fault zone with high-frequency noise recorded by dense linear arrays. Geophysical Journal International, 2019, 217, 879-893.	2.4	40
130	Techniques and parameters to analyze seismicity patterns associated with large earthquakes. Journal of Geophysical Research, 1997, 102, 17785-17795.	3.3	39
131	The Role of Heterogeneities as a Tuning Parameter of Earthquake Dynamics. Pure and Applied Geophysics, 2005, 162, 1027-1049.	1.9	39
132	Observational analysis of correlations between aftershock productivities and regional conditions in the context of a damage rheology model. Geophysical Journal International, 2009, 177, 481-490.	2.4	39
133	Seismic fault zone trapped noise. Journal of Geophysical Research: Solid Earth, 2014, 119, 5786-5799.	3.4	39
134	Theoretical limits on detection and analysis of small earthquakes. Journal of Geophysical Research: Solid Earth, 2016, 121, 5898-5916.	3.4	39
135	Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales. Geophysical Journal International, 2013, 193, 304-320.	2.4	38
136	Seismic Imaging of a Bimaterial Interface Along the Hayward Fault, CA, with Fault Zone Head Waves and Direct P Arrivals. Pure and Applied Geophysics, 2014, 171, 2993-3011.	1.9	38
137	Extracting seismic attenuation coefficients from cross-correlations of ambient noise at linear triplets of stations. Geophysical Journal International, 2015, 203, 1149-1163.	2.4	38
138	Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophysical Journal International, 2009, 178, 901-909.	2.4	36
139	Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophysical Journal International, 2017, 209, 1369-1388.	2.4	36
140	Aftershocks resulting from creeping sections in a heterogeneous fault. Geophysical Research Letters, 2005, 32, .	4.0	35
141	Comment on "Material contrast does not predict earthquake rupture propagation direction―by R. A. Harris and S. M. Day. Geophysical Research Letters, 2006, 33, .	4.0	34
142	Nonlinear multidimensional scaling and visualization of earthquake clusters over space, time and feature space. Nonlinear Processes in Geophysics, 2005, 12, 117-128.	1.3	33
143	Earthquake activity related to seismic cycles in a model for a heterogeneous strike-slip fault. Tectonophysics, 2006, 423, 137-145.	2.2	33
144	Testing atmospheric and tidal earthquake triggering at Mt. Hochstaufen, Germany. Journal of Geophysical Research: Solid Earth, 2013, 118, 5442-5452.	3.4	33

#	Article	IF	CITATIONS
145	Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California. Geophysical Journal International, 2018, 212, 442-457.	2.4	33
146	Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area. Geochemistry, Geophysics, Geosystems, 2013, 14, 2182-2197.	2.5	32
147	Damage–breakage rheology model and solid-granular transition near brittle instability. Journal of the Mechanics and Physics of Solids, 2014, 64, 184-197.	4.8	32
148	Bimaterial interfaces at the Karadere segment of the North Anatolian Fault, northwestern Turkey. Journal of Geophysical Research: Solid Earth, 2016, 121, 931-950.	3.4	32
149	Real-Time Automatic Detectors of P and S Waves Using Singular Value Decomposition. Bulletin of the Seismological Society of America, 2014, 104, 1696-1708.	2.3	31
150	Spatial variations of rock damage production by earthquakes in southern California. Earth and Planetary Science Letters, 2019, 512, 184-193.	4.4	31
151	Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning. Geophysical Research Letters, 2020, 47, e2020GL088353.	4.0	31
152	Shear heating during distributed fracturing and pulverization of rocks. Geology, 2013, 41, 139-142.	4.4	30
153	Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California. Geophysical Journal International, 2015, 202, 1949-1968.	2.4	30
154	Estimating recurrence times and seismic hazard of large earthquakes on an individual fault. Geophysical Journal International, 2007, 170, 1300-1310.	2.4	29
155	Patterns of co-seismic strain computed from southern California focal mechanisms. Geophysical Journal International, 2009, 177, 1015-1036.	2.4	29
156	Directional resonance variations across the Pernicana Fault, Mt Etna, in relation to brittle deformation fields. Geophysical Journal International, 2013, 193, 986-996.	2.4	29
157	Lack of Spatiotemporal Localization of Foreshocks before the 1999 Mw 7.1 Duzce, Turkey, Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 560-566.	2.3	29
158	Wave equation dispersion inversion of surface waves recorded on irregular topography. Geophysical Journal International, 2019, 217, 346-360.	2.4	29
159	A Unifying Phase Diagram for the Dynamics of Sheared Solids and Granular Materials. Pure and Applied Geophysics, 2011, 168, 2221-2237.	1.9	28
160	Eikonal Tomography of the Southern California Plate Boundary Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 9755-9779.	3.4	28
161	Seismic Imaging of the Southern California Plate Boundary around the South-Central Transverse Ranges Using Double-Difference Tomography. Pure and Applied Geophysics, 2019, 176, 1117-1143.	1.9	28
162	Velocity contrast across the 1944 rupture zone of the North Anatolian fault east of Ismetpasa from analysis of teleseismic arrivals. Geophysical Research Letters, 2012, 39, .	4.0	27

#	Article	IF	CITATIONS
163	PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismological Research Letters, 2020, 91, 2378-2389.	1.9	27
164	Application of pattern recognition techniques to earthquake catalogs generated by model of segmented fault systems in three-dimensional elastic solids. Journal of Geophysical Research, 1997, 102, 24513-24528.	3.3	26
165	Statistical Seismology. Pure and Applied Geophysics, 2005, 162, 1023-1026.	1.9	26
166	The Elastic Strain Energy of Damaged Solids with Applications to Non-Linear Deformation of Crystalline Rocks. Pure and Applied Geophysics, 2011, 168, 2199-2210.	1.9	26
167	Reversed-Polarity Secondary Deformation Structures Near Fault Stepovers. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	26
168	Potential Signatures of Damage-Related Radiation from Aftershocks of the 4 April 2010 (Mw 7.2) El Mayor-Cucapah Earthquake, Baja California, Mexico. Bulletin of the Seismological Society of America, 2013, 103, 1130-1140.	2.3	26
169	A Continuum Damage–Breakage Faulting Model and Solid-Granular Transitions. Pure and Applied Geophysics, 2014, 171, 3099-3123.	1.9	26
170	Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array. Geophysical Journal International, 2017, 210, 819-832.	2.4	26
171	Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California. Journal of Geophysical Research: Solid Earth, 2018, 123, 4041-4062.	3.4	26
172	Using Deep Learning to Derive Shear-Wave Velocity Models from Surface-Wave Dispersion Data. Seismological Research Letters, 2020, 91, 1738-1751.	1.9	26
173	Quasi-static and Quasi-dynamic Modeling of Earthquake Failure at Intermediate Scales. Pure and Applied Geophysics, 2004, 161, 2103.	1.9	24
174	Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi-Chi earthquake. Geophysical Journal International, 2005, 160, 695-706.	2.4	24
175	Evolving geometrical heterogeneities of fault trace data. Geophysical Journal International, 0, 182, 551-567.	2.4	24
176	Stochastic Branching Models of Fault Surfaces and Estimated Fractal Dimensions. Pure and Applied Geophysics, 2005, 162, 1077-1111.	1.9	23
177	Seismic radiation from tensile and shear point dislocations between similar and dissimilar solids. Geophysical Journal International, 2009, 179, 444-458.	2.4	23
178	<i>V</i> p/ <i>V</i> s tomography in the southern California plate boundary region using body and surface wave traveltime data. Geophysical Journal International, 2019, 216, 609-620.	2.4	23
179	Predicting the proximity to macroscopic failure using local strain populations from dynamic in situ X-ray tomography triaxial compression experiments on rocks. Earth and Planetary Science Letters, 2020, 543, 116344.	4.4	23
180	Comment on "The wrinkle-like slip pulse is not important in earthquake dynamics―by D. J. Andrews and R. A. Harris. Geophysical Research Letters, 2006, 33, .	4.0	22

#	Article	IF	CITATIONS
181	Spatial variations of shear wave anisotropy near the San Jacinto Fault Zone in Southern California. Journal of Geophysical Research: Solid Earth, 2015, 120, 8334-8347.	3.4	22
182	Dynamic rupture in a damage-breakage rheology model. Geophysical Journal International, 2016, 206, 1126-1143.	2.4	22
183	Temporal changes of seismic velocities in the San Jacinto Fault zone associated with the 2016 <i>M</i> w 5.2 Borrego Springs earthquake. Geophysical Journal International, 2020, 220, 1536-1554.	2.4	22
184	Seismic Imaging of the Mw 7.1 Ridgecrest Earthquake Rupture Zone From Data Recorded by Dense Linear Arrays. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022043.	3.4	22
185	An Algorithm for Detecting Clipped Waveforms and Suggested Correction Procedures. Seismological Research Letters, 2010, 81, 53-62.	1.9	21
186	An earthquake detection algorithm with pseudo-probabilities of multiple indicators. Geophysical Journal International, 2014, 197, 458-463.	2.4	21
187	Monitoring fault zone environments with correlations of earthquake waveforms. Geophysical Journal International, 2014, 196, 1073-1081.	2.4	20
188	Waveguide effects in very high rate GPS record of the 6 April 2009, <i>M_w</i> 6.1 L'Aquila, central Italy earthquake. Journal of Geophysical Research: Solid Earth, 2014, 119, 490-501.	3.4	20
189	Structural Properties of the San Jacinto Fault Zone at Blackburn Saddle from Seismic Data of a Dense Linear Array. Pure and Applied Geophysics, 2019, 176, 1169-1191.	1.9	20
190	Deformation Precursors to Catastrophic Failure in Rocks. Geophysical Research Letters, 2020, 47, e2020GL090255.	4.0	20
191	Variations of strain-drops of aftershocks of the 1999 İzmit and Düzce earthquakes around the Karadere-Düzce branch of the North Anatolian Fault. Geophysical Journal International, 2009, 177, 235-246.	2.4	19
192	Frequency domain analysis of errors in cross-correlations of ambient seismic noise. Geophysical Journal International, 2016, 207, 1630-1652.	2.4	19
193	Rayleigh phase velocities in Southern California from beamforming short-duration ambient noise. Geophysical Journal International, 2017, 211, 450-454.	2.4	19
194	Diverse Volumetric Faulting Patterns in the San Jacinto Fault Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 5068-5081.	3.4	19
195	Seismic Velocity Change Patterns Along the San Jacinto Fault Zone Following the 2010 <i>M</i> 7.2 El Mayorâ€Cucapah and <i>M</i> 5.4 Collins Valley Earthquakes. Journal of Geophysical Research: Solid Earth, 2019, 124, 7171-7192.	3.4	19
196	A Detailed Earthquake Catalog for the San Jacinto Faultâ€Zone Region in Southern California. Journal of Geophysical Research: Solid Earth, 2019, 124, 6908-6930.	3.4	19
197	Properties of inelastic yielding zones generated by in-plane dynamic ruptures—II. Detailed parameter-space study. Geophysical Journal International, 0, , .	2.4	18
198	Bimaterial interfaces in the south San Andreas Fault with opposite velocity contrasts NW and SE from San Gorgonio Pass. Geophysical Research Letters, 2016, 43, 10,680.	4.0	18

#	Article	IF	CITATIONS
199	Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model. Pure and Applied Geophysics, 2019, 176, 1003-1020.	1.9	18
200	The mixology of precursory strain partitioning approaching brittle failure in rocks. Geophysical Journal International, 2020, 221, 1856-1872.	2.4	18
201	Volumetric and shear strain localization throughout triaxial compression experiments on rocks. Tectonophysics, 2022, 822, 229181.	2.2	18
202	Reply to "Comment on 'Systematic Analysis of Shear-Wave Splitting in the Aftershock Zone of the 1999 Chi-Chi, Taiwan, Earthquake: Shallow Crustal Anisotropy and Lack of Precursory Changes,' by Yunfeng Liu, Ta-Liang Teng, and Yehuda Ben-Zion," by Stuart Crampin and Yuan Gao. Bulletin of the Seismological Society of America, 2005, 95, 361-366.	2.3	17
203	Postseismic deformation induced by brittle rock damage of aftershocks. Journal of Geophysical Research, 2010, 115, .	3.3	17
204	Apparent Vertical Moho Offsets under Continental Strike-Slip Faults from Lithology Contrasts in the Seismogenic Crust. Bulletin of the Seismological Society of America, 2012, 102, 2757-2763.	2.3	17
205	Systematic Receiver Function Analysis of the Moho Geometry in the Southern California Plate-Boundary Region. Pure and Applied Geophysics, 2015, 172, 1167-1184.	1.9	17
206	Nodal Seismograph Recordings of the 2019 Ridgecrest Earthquake Sequence. Seismological Research Letters, 2020, 91, 3622-3633.	1.9	17
207	Tectonic Inheritance With Dipping Faults and Deformation Fabric in the Brittle and Ductile Southern California Crust. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019525.	3.4	17
208	Detailed traveltime tomography and seismic catalogue around the 2019 <i>M</i> w7.1 Ridgecrest, California, earthquake using dense rapid-response seismic data. Geophysical Journal International, 2021, 227, 204-227.	2.4	17
209	Transient Brittleâ€Ðuctile Transition Depth Induced by Moderate‣arge Earthquakes in Southern and Baja California. Geophysical Research Letters, 2019, 46, 11109-11117.	4.0	16
210	Spatiotemporal Variations of Stress and Strain Parameters in the San Jacinto Fault Zone. Pure and Applied Geophysics, 2019, 176, 1145-1168.	1.9	16
211	Variations of Earthquake Properties Before, During, and After the 2019 M7.1 Ridgecrest, CA, Earthquake. Geophysical Research Letters, 2020, 47, e2020GL089650.	4.0	16
212	Characterizing the uppermost 100Âm structure of the San Jacinto fault zone southeast of Anza, California, through joint analysis of geological, topographic, seismic and resistivity data. Geophysical Journal International, 2020, 222, 781-794.	2.4	16
213	Regional seismic velocity changes following the 2019 <i>M</i> w 7.1 Ridgecrest, California earthquake from autocorrelations and <i>P</i> / <i>S</i> converted waves. Geophysical Journal International, 2021, 228, 620-630.	2.4	16
214	Slip modes and partitioning of energy during dynamic frictional sliding between identical elastic–viscoplastic solids. International Journal of Fracture, 2010, 162, 51-67.	2.2	15
215	Estimating correlations of neighbouring frequencies in ambient seismic noise. Geophysical Journal International, 2016, 206, 1065-1075.	2.4	15
216	Detection of random noise and anatomy of continuous seismic waveforms in dense array data near Anza California. Geophysical Journal International, 2019, 219, 1463-1473.	2.4	15

#	Article	IF	CITATIONS
217	Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling. Geophysical Journal International, 2019, 218, 1044-1056.	2.4	15
218	Semiautomated Estimates of Directivity and Related Source Properties of Small to Moderate Southern California Earthquakes Using Second Seismic Moments. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018566.	3.4	15
219	Theoretical and numerical results on effects of attenuation on correlation functions of ambient seismic noise. Geophysical Journal International, 2013, 194, 1966-1983.	2.4	14
220	Analysis of Seismic Signals Generated by Vehicle Traffic with Application to Derivation of Subsurface Q-Values. Seismological Research Letters, 2021, 92, 2354-2363.	1.9	14
221	Dynamical System Analysis and Forecasting of Deformation Produced by an Earthquake Fault. Pure and Applied Geophysics, 2004, 161, 2023-2051.	1.9	13
222	Properties of inelastic yielding zones generated by in-plane dynamic ruptures—I. Model description and basic results. Geophysical Journal International, 0, , .	2.4	13
223	Scaling of maximum observed magnitudes with geometrical and stress properties of strikeâ€slip faults. Geophysical Research Letters, 2015, 42, 10,230.	4.0	13
224	Seismic clustering in the Sea of Marmara: Implications for monitoring earthquake processes. Tectonophysics, 2019, 768, 228176.	2.2	13
225	Probing failure susceptibilities of earthquake faults using small-quake tidal correlations. Nature Communications, 2015, 6, 6157.	12.8	12
226	Significant Effects of Shallow Seismic and Stress Properties on Phase Velocities of Rayleigh Waves Up to 20Âs. Pure and Applied Geophysics, 2019, 176, 1255-1267.	1.9	12
227	Representation of seismic sources sustaining changes of elastic moduli. Geophysical Journal International, 2019, 217, 135-139.	2.4	12
228	Internal structure of the San Jacinto fault zone at the Ramona Reservation, north of Anza, California, from dense array seismic data. Geophysical Journal International, 2020, 224, 1225-1241.	2.4	12
229	Large Earthquake Hazard of the San Jacinto Fault Zone, CA, from Long Record of Simulated Seismicity Assimilating the Available Instrumental and Paleoseismic Data. Pure and Applied Geophysics, 2014, 171, 2955-2965.	1.9	11
230	Theoretical constraints on dynamic pulverization of fault zone rocks. Geophysical Journal International, 0, , ggx033.	2.4	11
231	A Bimaterial Interface Along the Northern San Jacinto Fault Through Cajon Pass. Geophysical Research Letters, 2018, 45, 11,622.	4.0	11
232	Analysis of Fault Zone Resonance Modes Recorded by a Dense Seismic Array Across the San Jacinto Fault Zone at Blackburn Saddle. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019756.	3.4	11
233	Examination of scaling between proposed early signals in P waveforms and earthquake magnitudes. Geophysical Journal International, 2007, 171, 1258-1268.	2.4	10
234	Effects of Shallow-Velocity Reductions on 3D Propagation of Seismic Waves. Seismological Research Letters, 2020, 91, 3313-3322.	1.9	10

#	Article	IF	CITATIONS
235	Detailed space–time variations of the seismic response of the shallow crust to small earthquakes from analysis of dense array data. Geophysical Journal International, 2021, 225, 298-310.	2.4	10
236	Isotropic Source Components of Events in the 2019 Ridgecrest, California, Earthquake Sequence. Geophysical Research Letters, 2021, 48, e2021GL094515.	4.0	10
237	Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of. , 2009, , 5021-5037.		10
238	Fracture Network Localization Preceding Catastrophic Failure in Triaxial Compression Experiments on Rocks. Frontiers in Earth Science, 2021, 9, .	1.8	10
239	An algorithm for automated identification of fault zone trapped waves. Geophysical Journal International, 2015, 202, 933-942.	2.4	9
240	Finite-frequency sensitivity kernels of seismic waves to fault zone structures. Geophysical Journal International, 2015, 203, 2032-2048.	2.4	9
241	Perspectives on Clustering and Declustering of Earthquakes. Seismological Research Letters, 0, , .	1.9	9
242	Examination of scaling between earthquake magnitude and proposed early signals in <i>P</i> waveforms from very near source stations in a South African gold mine. Journal of Geophysical Research, 2008, 113, .	3.3	7
243	Spatioâ€ŧemporal variations of doubleâ€couple aftershock mechanisms and possible volumetric earthquake strain. Journal of Geophysical Research: Solid Earth, 2013, 118, 2347-2355.	3.4	7
244	Modelling non-volcanic tremor, slow slip events and large earthquakes in the Guerrero subduction zone (Mexico) with space-variable frictional weakening and creep. Geophysical Journal International, 2015, 202, 653-669.	2.4	7
245	Corner frequency ratios ofPandSwaves and strain drops of earthquakes recorded by a tight network around the Karadere segment of the North Anatolian Fault Zone: evidence for non-classical source processes. Geophysical Journal International, 2016, 205, 220-235.	2.4	7
246	Variations of Stress Parameters in the Southern California Plate Boundary Around the South Central Transverse Ranges. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019482.	3.4	7
247	Isotropic seismic radiation from rock damage and dilatancy. Geophysical Journal International, 2020, 222, 449-460.	2.4	7
248	Seismicity, Critical States of: From Models to Practical Seismic Hazard Estimates Space. , 2009, , 7853-7872.		7
249	Validation of seismic velocity models in southern California with full-waveform simulations. Geophysical Journal International, 2022, 229, 1232-1254.	2.4	7
250	Probabilistic model of waiting times between large failures in sheared media. Physical Review E, 2016, 93, 013003.	2.1	6
251	Nonmonotonicity of the Frictional Bimaterial Effect. Journal of Geophysical Research: Solid Earth, 2017, 122, 8270-8284.	3.4	6
252	An Automated Method for Developing a Catalog of Small Earthquakes Using Data of a Dense Seismic Array and Nearby Stations. Seismological Research Letters, 2020, 91, 2862-2871.	1.9	6

#	Article	IF	CITATIONS
253	Earthquake source properties from analysis of dynamic ruptures and far-field seismic waves in a damage-breakage model. Geophysical Journal International, 2021, 224, 1793-1810.	2.4	6
254	The influence of preexisting host rock damage on fault network localization. Journal of Structural Geology, 2021, 153, 104471.	2.3	6
255	Predicting Fracture Network Development in Crystalline Rocks. Pure and Applied Geophysics, 2022, 179, 275-299.	1.9	6
256	General Seismic Architecture of the Southern San Andreas Fault Zone around the Thousand Palms Oasis from a Large-N Nodal Array. The Seismic Record, 2022, 2, 50-58.	3.1	6
257	Seismic Traveltime Tomography of Southern California Using Poissonâ€Voronoi Cells and 20ÂYears of Data. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
258	High-resolution seismic imaging of the plate boundary in northern Baja California and southern California using double-pair double-difference tomography. Earth and Planetary Science Letters, 2021, 568, 117004.	4.4	5
259	A Data-Driven Framework for Automated Detection of Aircraft-Generated Signals in Seismic Array Data Using Machine Learning. Seismological Research Letters, 2022, 93, 226-240.	1.9	5
260	Distribution of seismic scatterers in the San Jacinto Fault Zone, southeast of Anza, California, based on passive matrix imaging. Earth and Planetary Science Letters, 2022, 578, 117304.	4.4	5
261	On different approaches to modeling. Journal of Geophysical Research: Solid Earth, 2017, 122, 558-559.	3.4	4
262	Detection Limits and Nearâ€Field Ground Motions of Fast and Slow Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018935.	3.4	4
263	Invariant Galton–Watson branching process for earthquake occurrence. Geophysical Journal International, 2022, 231, 567-583.	2.4	4
264	Predicting fault reactivation and macroscopic failure in discrete element method simulations of restraining and releasing step overs. Earth and Planetary Science Letters, 2022, 593, 117667.	4.4	3
265	Brittle Deformation of Solid and Granular Materials with Applications to Mechanics of Earthquakes and Faults. Pure and Applied Geophysics, 2011, 168, 2147-2149.	1.9	2
266	Plain Language Summary Required for Submission to Journal of Geophysical Research: Solid Earth. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022351.	3.4	2
267	How the force and fracture architectures develop within and around healed fault zones during biaxial loading toward macroscopic failure. Journal of Structural Geology, 2021, 147, 104329.	2.3	2
268	Properties and Processes of Crustal Fault Zones: Volume I. Pure and Applied Geophysics, 2014, 171, 2863-2865.	1.9	1
269	Frontiers in Studies of Earthquakes and Faults: Introduction. Pure and Applied Geophysics, 2019, 176, 979-982.	1.9	1
270	Characterization of Damage in Sandstones along the Mojave Section of the San Andreas Fault:		1

Implications for the Shallow Extent of Damage Generation. , 2009, , 1747-1773. 270

#	Article	IF	CITATIONS
271	Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults: Implications for Earthquake Physics. , 2009, , 1725-1746.		1
272	Slip modes and partitioning of energy during dynamic frictional sliding between identical elastic–viscoplastic solids. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 51-67.	0.2	1
273	Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. , 2009, , 1537-1573.		1
274	Seismicity, Critical States of: From Models to Practical Seismic Hazard Estimates Space. , 2011, , 805-824.		1
275	Properties and Processes of Crustal Fault Zones: Volume II. Pure and Applied Geophysics, 2015, 172, 1003-1005.	1.9	0
276	Thank You to Our 2018 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 2019, 124, 3242-3253.	3.4	0
277	Thank You to Our 2019 Reviewers. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019781.	3.4	0
278	Thank You to Our 2020 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021896.	3.4	0
279	Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of. , 2013, , 1-26.		0
280	Physics of Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems. , 2022, , 1-26.		0
281	Thank You to Our 2021 Peer Reviewers. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	0
282	Physics of Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems. , 2022, , 191-212.		0