Liang Jie Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6989829/publications.pdf

Version: 2024-02-01

62 papers	1,372 citations	20 h-index	329751 37 g-index
63 all docs	63 docs citations	63 times ranked	1320 citing authors

#	Article	IF	CITATIONS
1	Surface Dyakonov–Cherenkov radiation. ELight, 2022, 2, .	11.9	29
2	Enhanced Versatility of Tableâ€Top Xâ€Rays from Van der Waals Structures. Advanced Science, 2022, 9, e2105401.	5.6	12
3	Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Optics Express, 2022, 30, 27763.	1.7	13
4	Propagation-induced radiation limits in 3D Dirac semimetal high harmonic generation. , 2021, , .		0
5	Dilated convolutional neural networks for fiber Bragg grating signal demodulation. Optics Express, 2021, 29, 7110.	1.7	19
6	High Mobility 3D Dirac Semimetal (Cd ₃ As ₂) for Ultrafast Photoactive Terahertz Photonics. Advanced Functional Materials, 2021, 31, 2011011.	7.8	46
7	Control of quantum electrodynamical processes by shaping electron wavepackets. Nature Communications, 2021, 12, 1700.	5.8	34
8	Propagation-invariant space-time caustics of light. Optics Express, 2021, 29, 30682.	1.7	15
9	Prospects in x-ray science emerging from quantum optics and nanomaterials. Applied Physics Letters, 2021, 119, .	1.5	18
10	Enhanced photon emission from free electron excitation of a nanowell. APL Photonics, 2021, 6, .	3.0	3
11	Spaceâ€Time Wave Packets from Smithâ€Purcell Radiation. Advanced Science, 2021, 8, e2100925.	5.6	10
12	Maximal terahertz emission in high harmonic generation from 3D Dirac semimetals. Communications Physics, 2021, 4, .	2.0	4
13	Graphene Metamaterials for Intense, Tunable, and Compact Extreme Ultraviolet and Xâ€Ray Sources. Advanced Science, 2020, 7, 1901609.	5.6	21
14	The Complex Charge Paradigm: A New Approach for Designing Electromagnetic Wavepackets. Advanced Science, 2020, 7, 1903377.	5.6	17
15	Tunable free-electron X-ray radiation from van der Waals materials. Nature Photonics, 2020, 14, 686-692.	15.6	48
16	Monochromatic X-ray Source Based on Scattering from a Magnetic Nanoundulator. ACS Photonics, 2020, 7, 1096-1103.	3.2	4
17	Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. Physical Review Research, 2020, 2, .	1.3	29
18	Tunable Free-electron X-ray Radiation From van der Waals Materials. , 2020, , .		O

#	Article	IF	CITATIONS
19	Quantum Electron Wave-Shaping for Coherent Enhancement of Radiation. , 2020, , .		О
20	Anomalous Suppression of Higher-Order Nonlinearities in 3D Dirac Semimetals., 2020,,.		0
21	Light emission based on nanophotonic vacuum forces. Nature Physics, 2019, 15, 1284-1289.	6.5	21
22	Terahertz-optical intensity grating for creating high-charge, attosecond electron bunches. New Journal of Physics, 2019, 21, 033020.	1.2	12
23	Ultrafast Multiharmonic Plasmon Generation by Optically Dressed Electrons. Physical Review Letters, 2019, 122, 053901.	2.9	8
24	Editorial: Lasers in Accelerator Science and Secondary Emission Light Source Technology. Frontiers in Physics, 2019, 7, .	1.0	2
25	Abruptly focusing X-waves: Nondiffracting waves with localized disruptions. , 2019, , .		0
26	Controlling the Near-Field of Metasurfaces for Free-Electron Multi-Harmonic Hard X-Ray Generation. , 2018, , .		0
27	Metasurface-based multi-harmonic free-electron light source. Light: Science and Applications, 2018, 7, 64.	7.7	40
28	Linear-Field Particle Acceleration in Free Space by Spatiotemporally Structured Laser Pulses., 2018,,.		0
29	Graphene metamaterials for intense, tunable and compact EUV and X-sources. , $2018, $, .		2
30	Few-Cycle-Pulse-Driven Metasurface-Based Multi-Color X-ray Source. , 2018, , .		0
31	Engineering Infrared Quantum Fluctuations to Generate Light from UV through Gamma Rays., 2018,,.		0
32	High harmonic plasmon generation by dressed electrons. , 2018, , .		0
33	Bloch oscillations of a free electron in a strong field. , 2018, , .		0
34	Abruptly Focusing and Defocusing Needles of Light and Closed-Form Electromagnetic Wavepackets. ACS Photonics, 2017, 4, 1131-1137.	3.2	35
35	Ultrashort Tilted-Pulse-Front Pulses and NonparaxialÂTilted-Phase-Front Beams. ACS Photonics, 2017, 4, 2257-2264.	3.2	54
36	Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159.	1.6	39

#	Article	IF	CITATIONS
37	Accelerating Beam-Driven Generation of Isolated Few-cycle EUV and X-ray Pulses., 2017,,.		O
38	Abruptly Focusing and Defocusing Needles of Light. , 2017, , .		0
39	Controlling electromagnetic fields at boundaries of arbitrary geometries. Physical Review A, 2016, 94,	1.0	36
40	Efficient plasmonic emission by the quantum ÄŒerenkov effect from hot carriers in graphene. Nature Communications, 2016, 7, ncomms11880.	5 . 8	78
41	Towards graphene plasmon-based free-electron infrared to X-ray sources. Nature Photonics, 2016, 10, 46-52.	15.6	112
42	Direct longitudinal laser acceleration of electrons in free space. Physical Review Accelerators and Beams, 2016, 19, .	0.6	73
43	Towards On-Chip, Tunable X-ray Sources based on Graphene Plasmons. , 2016, , .		0
44	Ultrafast Non-Paraxial Abruptly Autofocusing Pulses for High-Gradient Electron Acceleration. , 2016, , .		0
45	Monoenergetic Relativistic Electron Pulses by Laser-Driven Linear Acceleration in Free Space. , 2016, , .		0
46	Toward a terahertz-driven electron gun. Scientific Reports, 2015, 5, 14899.	1.6	40
47	All-optical three-dimensional electron pulse compression. New Journal of Physics, 2015, 17, 013051.	1.2	20
48	Relativistic Few-cycle Cylindrical Vector Beams for Table-top Particle Accelerators., 2015,,.		0
49	Ultrafast Non-Paraxial Autofocusing Pulses for High-Gradient Electron Acceleration. , 2015, , .		0
50	Temporal Lenses for Three-Dimensional Electron Pulse Compression. , 2015, , .		0
51	All-Optical, Three-Dimensional Electron Pulse Compression. , 2015, , .		0
52	Electron acceleration in a single-cycle terahertz field. , 2014, , .		0
53	First Observation of Direct Laser On-axis Acceleration of Electrons in Vacuum. , 2014, , .		0
54	Improved beam waist formula for ultrashort, tightly focused linearly, radially, and azimuthally polarized laser pulses in free space. Optics Letters, 2014, 39, 1258.	1.7	18

#	Article	lF	CITATIONS
55	Compact electron acceleration and bunch compression in THz waveguides. Optics Express, 2013, 21, 9792.	1.7	98
56	A General Threshold for Laser-Driven Linear Particle Acceleration in Infinite Vacuum. , $2012, \ldots$		0
57	Two-color-laser-driven direct electron acceleration in infinite vacuum. Optics Letters, 2011, 36, 957.	1.7	12
58	A threshold for laser-driven linear particle acceleration in unbounded vacuum. Applied Physics Letters, 2011, 99, 211101.	1.5	7
59	Two-Color-Laser-Driven Direct Electron Acceleration in Infinite Vacuum., 2011,,.		0
60	Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Optics Express, 2010, 18, 25035.	1.7	80
61	Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 618-633.	1.9	225
62	Bandwidth Enhancement by Master Modulation of Optical Injection-Locked Lasers. Journal of Lightwave Technology, 2008, 26, 2584-2593.	2.7	38