List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/698960/publications.pdf Version: 2024-02-01

CENE KIM

#	Article	IF	CITATIONS
1	Combined heartâ€liverâ€kidney transplant: The university of Chicago medicine experience. Clinical Transplantation, 2022, 36, e14586.	1.6	2
2	A New Strategy for Left Ventricular Assist Device Outflow Graft Interrogation Using Ultrasound Contrast. Journal of the American Society of Echocardiography, 2021, 34, 445-447.	2.8	1
3	Chloroquine- and Hydroxychloroquine–Induced Cardiomyopathy: A Case Report and Brief Literature Review. American Journal of Clinical Pathology, 2021, 155, 793-801.	0.7	15
4	Impact of worsening of aortic insufficiency during HeartMate 3 LVAD support. Artificial Organs, 2021, 45, 297-302.	1.9	14
5	Discordance between immunofluorescence and immunohistochemistry C4d staining and outcomes following heart transplantation. Clinical Transplantation, 2021, 35, e14242.	1.6	2
6	Donorâ€derived cellâ€free DNA is associated with cardiac allograft vasculopathy. Clinical Transplantation, 2021, 35, e14206.	1.6	14
7	The Clinical Importance of Hyponatremia in Patients with Left Ventricular Assist Devices. ASAIO Journal, 2021, 67, 1012-1017.	1.6	4
8	Incidence and Clinical Significance of Hyperkalemia Following Heart Transplantation. Transplantation Proceedings, 2021, 53, 673-680.	0.6	1
9	Editorial: A call to action: let's work together to end racial disparities in heart failure. Current Opinion in Cardiology, 2021, 36, 318-319.	1.8	0
10	Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Annals of Thoracic Surgery, 2021, 111, 1264-1270.	1.3	22
11	Oral Milrinone for the Treatment of Chronic Severe Right Ventricular Failure in Left Ventricular Assist Device Patients. Circulation: Heart Failure, 2021, 14, e007286.	3.9	7
12	Impact of Race on Clinical Outcomes After Implantation With a Fully Magnetically Levitated Left Ventricular Assist Device: An Analysis From the MOMENTUM 3 Trial. Circulation: Heart Failure, 2021, 14, e008360.	3.9	9
13	Outcomes From Three Decades of Infant and Pediatric Heart Transplantation. ASAIO Journal, 2021, 67, 1051-1059.	1.6	8
14	Echocardiographic evaluation of the effects of sacubitril–valsartan on vascular properties in heart failure patients. International Journal of Cardiovascular Imaging, 2020, 36, 271-278.	1.5	4
15	Short-Term Efficacy and Safety of Tolvaptan in Patients with Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 253-257.	1.6	5
16	Hemodynamic Effects of Concomitant Mitral Valve Surgery and Left Ventricular Assist Device Implantation. ASAIO Journal, 2020, 66, 355-361.	1.6	9
17	Estimation of the Severity of Aortic Insufficiency by HVAD Flow Waveform. Annals of Thoracic Surgery, 2020, 109, 945-949.	1.3	5
18	Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO Journal, 2020, 66, 49-54.	1.6	1

#	Article	IF	CITATIONS
19	Omegaâ€3 and hemocompatibilityâ€related adverse events. Journal of Cardiac Surgery, 2020, 35, 405-412.	0.7	4
20	Heart transplantation in patients with localized prostate cancer—Are we denying a lifeâ€saving therapy due to an indolent tumor?. Clinical Transplantation, 2020, 34, e14080.	1.6	2
21	Hypogammaglobulinemia following heart transplantation: Prevalence, predictors, and clinical importance. Clinical Transplantation, 2020, 34, e14087.	1.6	3
22	Neurohormonal Blockade During Left Ventricular Assist Device Support. ASAIO Journal, 2020, 66, 881-885.	1.6	4
23	CardioMEMS-Guided CAR T Cell Therapy for Lymphoma in a Patient With Anthracycline-Induced Cardiomyopathy. JACC: CardioOncology, 2020, 2, 515-518.	4.0	5
24	Early experience of COVID-19 in 2 heart transplant recipients: Case reports and review of treatment options. American Journal of Transplantation, 2020, 20, 2916-2922.	4.7	41
25	Aortic Insufficiency During HeartMate 3 Left Ventricular Assist Device Support. Journal of Cardiac Failure, 2020, 26, 863-869.	1.7	18
26	Decoupling Between Diastolic Pulmonary Artery and Pulmonary Capillary Wedge Pressures Is Associated With Right Ventricular Dysfunction and Hemocompatibilityâ€Related Adverse Events in Patients With Left Ventricular Assist Devices. Journal of the American Heart Association, 2020, 9, e014801.	3.7	10
27	Massive Myocardial Calcium Deposition. JACC: Case Reports, 2020, 2, 996-1003.	0.6	2
28	Transcatheter Aortic Valve Replacement in Left Ventricular Assist Device Patients with Aortic Regurgitation. Structural Heart, 2020, 4, 107-112.	0.6	8
29	Optimal cannula positioning of HeartMate 3 left ventricular assist device. Artificial Organs, 2020, 44, e509-e519.	1.9	4
30	HeartWare Ventricular Assist Device Cannula Position and Hemocompatibility-Related Adverse Events. Annals of Thoracic Surgery, 2020, 110, 911-917.	1.3	6
31	Longitudinal Trajectories of Hemodynamics Following Left Ventricular Assist Device Implantation. Journal of Cardiac Failure, 2020, 26, 383-390.	1.7	13
32	Effect of Concomitant Tricuspid Valve Surgery With Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2020, 110, 918-924.	1.3	13
33	Combined Left Ventricular Assist Device and Coronary Artery Bypass Grafting Surgery: Should We Bypass the Bypass?. ASAIO Journal, 2020, 66, 32-37.	1.6	8
34	HVAD Flow Waveform Estimates Left Ventricular Filling Pressure. Journal of Cardiac Failure, 2020, 26, 342-348.	1.7	8
35	Association of Clinical Outcomes With Left Ventricular Assist Device Use by Bridge to Transplant or Destination Therapy Intent. JAMA Cardiology, 2020, 5, 411.	6.1	109
36	Deep Y-Descent in Right Atrial Waveforms Following Left Ventricular Assist Device Implantation. Journal of Cardiac Failure, 2020, 26, 360-367.	1.7	10

#	Article	IF	CITATIONS
37	Outcomes following left ventricular assist device exchange. Journal of Cardiac Surgery, 2020, 35, 591-597.	0.7	4
38	Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. Journal of Cardiac Failure, 2019, 25, 911-920.	1.7	33
39	Left Atrial Appendage Occlusion With Left Ventricular Assist Device Decreases Thromboembolic Events. Annals of Thoracic Surgery, 2019, 107, 1181-1186.	1.3	19
40	Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circulation: Heart Failure, 2019, 12, e005094.	3.9	71
41	Impact of Hemodynamic Ramp Test-Guided HVAD Speed and Medication Adjustments on Clinical Outcomes. Circulation: Heart Failure, 2019, 12, e006067.	3.9	60
42	Increasing heart transplant donor pool by liberalization of size matching. Journal of Heart and Lung Transplantation, 2019, 38, 1197-1205.	0.6	19
43	Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. Journal of Cardiac Failure, 2019, 25, 787-794.	1.7	13
44	Simultaneous heart, liver and kidney transplantation: A viable option for heart failure patients with multiorgan failure. Journal of Heart and Lung Transplantation, 2019, 38, 997-999.	0.6	9
45	Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. Journal of Cardiac Surgery, 2019, 34, 1511-1518.	0.7	7
46	Association of Inflow Cannula Position with Left Ventricular Unloading and Clinical Outcomes in Patients with HeartMate II Left Ventricular Assist Device. ASAIO Journal, 2019, 65, 331-335.	1.6	30
47	Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibilityâ€related adverse events. European Journal of Heart Failure, 2019, 21, 655-662.	7.1	72
48	Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. Journal of Cardiac Failure, 2019, 25, 20-26.	1.7	9
49	Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation—An Underrecognized Problem. Journal of Cardiac Failure, 2018, 24, 101-108.	1.7	12
50	Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device. Journal of Cardiac Failure, 2018, 24, 249-254.	1.7	31
51	Increased Risk of Bleeding in Left Ventricular Assist Device Patients Treated with Enoxaparin as Bridge to Therapeutic International Normalized Ratio. ASAIO Journal, 2018, 64, 140-146.	1.6	18
52	Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. Journal of Cardiac Failure, 2018, 24, 159-166.	1.7	23
53	Repeated Ramp Tests on Stable LVAD Patients Reveal Patient-Specific Hemodynamic Fingerprint. ASAIO Journal, 2018, 64, 701-707.	1.6	11
54	The first-in-human experience with a minimally invasive, ambulatory, counterpulsation heart assist system for advanced congestive heart failure. Journal of Heart and Lung Transplantation, 2018, 37, 1-6.	0.6	34

#	Article	IF	CITATIONS
55	Analysis of Patients with Ventricular Assist Devices Presenting to an Urban Emergency Department. Western Journal of Emergency Medicine, 2018, 19, 907-911.	1.1	9
56	Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circulation: Heart Failure, 2018, 11, e005082.	3.9	51
57	Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. Journal of Cardiac Failure, 2018, 24, 575-582.	1.7	19
58	The Effect of Left Ventricular Assist Device Therapy on Cardiac Biomarkers: Implications for the Identification of Myocardial Recovery. Current Heart Failure Reports, 2018, 15, 250-259.	3.3	13
59	Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography, 2018, 35, 1606-1615.	0.9	6
60	Predictors of Hemodynamic Improvement and Stabilization Following Intraaortic Balloon Pump Implantation in Patients With Advanced Heart Failure. Journal of Invasive Cardiology, 2018, 30, 56-61.	0.4	12
61	Complementary roles of gasotransmitters CO and H ₂ S in sleep apnea. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1413-1418.	7.1	65
62	Atrial Arrhythmias and Electroanatomical Remodeling in Patients With Left Ventricular Assist Devices. Journal of the American Heart Association, 2017, 6, .	3.7	37
63	Cardiac Output Assessment in Patients Supported with Left Ventricular Assist Device: Discordance Between Thermodilution and Indirect Fick Cardiac Output Measurements. ASAIO Journal, 2017, 63, 433-437.	1.6	12
64	Decoupling Between Diastolic Pulmonary Artery Pressure and Pulmonary Capillary Wedge Pressure as a Prognostic Factor After Continuous Flow Ventricular Assist Device Implantation. Circulation: Heart Failure, 2017, 10, .	3.9	57
65	Myocardial Recovery After LVADÂImplantation. Journal of the American College of Cardiology, 2017, 70, 355-357.	2.8	12
66	Surgically Corrected Mitral Regurgitation During Left Ventricular Assist Device Implantation Is Associated With Low Recurrence Rate and Improved Midterm Survival. Annals of Thoracic Surgery, 2017, 103, 725-733.	1.3	36
67	Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H962-H972.	3.2	114
68	LMO7â€null mice exhibit phenotypes consistent with emeryâ€dreifuss muscular dystrophy. Muscle and Nerve, 2015, 51, 222-228.	2.2	17
69	Cardiac function in muscular dystrophy associates with abdominal muscle pathology. Journal of Neuromuscular Diseases, 2015, 2, 39-49.	2.6	11
70	Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications, 2015, 6, 6656.	12.8	336
71	The Subclavian Intraaortic Balloon Pump: AÂCompelling Bridge Device for Advanced HeartÂFailure. Annals of Thoracic Surgery, 2015, 100, 2151-2158.	1.3	64
72	<i>Abcc9</i> is required for the transition to oxidative metabolism in the newborn heart. FASEB Journal, 2014, 28, 2804-2815.	0.5	16

#	Article	IF	CITATIONS
73	Beneficial effects of quinoline-3-carboxamide (ABR-215757) on atherosclerotic plaque morphology in S100A12 transgenic ApoE nullÂmice. Atherosclerosis, 2013, 228, 69-79.	0.8	46
74	Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H415-H426.	3.2	74
75	The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine, 2012, 18, 1643-1650.	30.7	400
76	Vascular Remodeling and Arterial Calcification Are Directly Mediated by S100A12 (EN-RAGE) in Chronic Kidney Disease. American Journal of Nephrology, 2011, 33, 250-259.	3.1	55
77	S100A12 in Vascular Smooth Muscle Accelerates Vascular Calcification in Apolipoprotein E–Null Mice by Activating an Osteogenic Gene Regulatory Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 337-344.	2.4	97
78	S100A12 Mediates Aortic Wall Remodeling and Aortic Aneurysm. Circulation Research, 2010, 106, 145-154.	4.5	79
79	Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway. Journal of Biological Chemistry, 2010, 285, 3133-3144.	3.4	351
80	Nesprin-1 mutations in human and murine cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 600-608.	1.9	124
81	Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. Journal of Clinical Investigation, 2009, 119, 2758-71.	8.2	781