
Guo-Dong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6989361/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The antiâ€obesity and gut microbiota modulating effects of taxifolin in <scp>C57BL</scp> / <scp>6J</scp> mice fed with a highâ€fat diet. Journal of the Science of Food and Agriculture, 2022, 102, 1598-1608.	3.5	24
2	Smilax china L. flavonoid alleviates HFHS-induced inflammation by regulating the gut-liver axis in mice. Phytomedicine, 2022, 95, 153728.	5.3	16
3	Regulating the Imbalance of Gut Microbiota by <i>Smilax china</i> L. Polyphenols to Alleviate Dextran Sulfate Sodium-induced Inflammatory Bowel Diseases. The American Journal of Chinese Medicine, 2022, 50, 553-568.	3.8	4
4	Dihydromyricetin Improves Cognitive Impairments in <scp>d</scp> â€Galactoseâ€Induced Aging Mice through Regulating Oxidative Stress and Inhibition of Acetylcholinesterase. Molecular Nutrition and Food Research, 2022, 66, e2101002.	3.3	7
5	The inhibitory kinetics and mechanism of quercetin-3-O-rhamnoside and chlorogenic acid derived from Smilax china L. EtOAc fraction on xanthine oxidase. International Journal of Biological Macromolecules, 2022, 213, 447-455.	7.5	12
6	Multifunctional Selenium Nanoparticles with Different Surface Modifications Ameliorate Neuroinflammation through the Gut Microbiota-NLRP3 Inflammasome-Brain Axis in APP/PS1 Mice. ACS Applied Materials & Interfaces, 2022, 14, 30557-30570.	8.0	20
7	Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating <scp>AMPK</scp> in highâ€fat dietâ€induced obese mice. Journal of the Science of Food and Agriculture, 2021, 101, 573-581.	3.5	8
8	<i>In vivo</i> and <i>in vitro</i> comparison of three astilbin encapsulated zein nanoparticles with different outer shells. Food and Function, 2021, 12, 9784-9792.	4.6	7
9	A flavonoid-rich <i>Smilax china</i> L. extract prevents obesity by upregulating the adiponectin-receptor/AMPK signalling pathway and modulating the gut microbiota in mice. Food and Function, 2021, 12, 5862-5875.	4.6	21
10	Smilax china L. polyphenols alleviates obesity and inflammation by modulating gut microbiota in high fat/high sucrose diet-fed C57BL/6J mice. Journal of Functional Foods, 2021, 77, 104332.	3.4	31
11	Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3â€L1 cells. Journal of Food Biochemistry, 2021, 45, e13795.	2.9	18
12	Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer's Disease-like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS Applied Materials & Interfaces, 2021, 13, 46406-46420.	8.0	69
13	Physicochemical properties and bioavailability comparison of two quercetin loading zein nanoparticles with outer shell of caseinate and chitosan. Food Hydrocolloids, 2021, 120, 106959.	10.7	44
14	Catechins and Caffeine Promote Lipid Metabolism and Heat Production Through the Transformation of Differentiated 3T3‣1 Adipocytes from White to Beige Adipocytes. Journal of Food Science, 2020, 85, 192-200.	3.1	11
15	Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat. Food Chemistry, 2020, 330, 127245.	8.2	39
16	Chemical composition, antibacterial properties, and mechanism of Smilax china L. polyphenols. Applied Microbiology and Biotechnology, 2019, 103, 9013-9022.	3.6	38
17	Dietary supplement of Smilax china L. ethanol extract alleviates the lipid accumulation by activating AMPK pathways in high-fat diet fed mice. Nutrition and Metabolism, 2019, 16, 6.	3.0	10
18	Effect of Smilax china L. starch on the gel properties and interactions of calcium sulfate-induced soy protein isolate gel. International Journal of Biological Macromolecules, 2019, 135, 127-132.	7.5	43

GUO-DONG ZHENG

#	Article	IF	CITATIONS
19	Collaborative effects of chlorogenic acid and caffeine on lipid metabolism <i>via</i> the AMPKα-LXRα/SREBP-1c pathway in high-fat diet-induced obese mice. Food and Function, 2019, 10, 7489-7497.	4.6	32
20	Chemical composition, antioxidant activities of polysaccharide from Pine needle (Pinus massoniana) and hypolipidemic effect in high-fat diet-induced mice. International Journal of Biological Macromolecules, 2019, 125, 445-452.	7.5	27
21	Enhanced Effect of Combining Chlorogenic Acid on Selenium Nanoparticles in Inhibiting Amyloid β Aggregation and Reactive Oxygen Species Formation In Vitro. Nanoscale Research Letters, 2018, 13, 303.	5.7	38
22	Combinational Effect of Pine Needle Polysaccharide and Kudzu Flavonoids on Cell Differentiation and Fat Metabolism in 3T3-L1 Cells. Food Science and Technology Research, 2018, 24, 903-910.	0.6	4
23	A comparative study of resveratrol and resveratrolâ€functional selenium nanoparticles: Inhibiting amyloid β aggregation and reactive oxygen species formation properties. Journal of Biomedical Materials Research - Part A, 2018, 106, 3034-3041.	4.0	53
24	<i>Chimonanthus nitens</i> Oliv. leaf extract exerting anti-hyperglycemic activity by modulating GLUT4 and GLUT1 in the skeletal muscle of a diabetic mouse model. Food and Function, 2018, 9, 4959-4967.	4.6	14
25	Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Experimental and Therapeutic Medicine, 2017, 13, 688-694.	1.8	21
26	Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation. International Journal of Biological Macromolecules, 2017, 95, 719-724.	7.5	60
27	Synergistic effects of caffeine and catechins on lipid metabolism in chronically fed mice via the AMP-activated protein kinase signaling pathway. European Journal of Nutrition, 2017, 56, 2309-2318.	3.9	17
28	Effects of Chimonanthus nitens Oliv. Leaf Extract on Glycolipid Metabolism and Antioxidant Capacity in Diabetic Model Mice. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	14
29	Effects of Puerarin on Lipid Accumulation and Metabolism in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0122925.	2.5	41
30	Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. British Journal of Nutrition, 2014, 112, 1034-1040.	2.3	49
31	IDENTIFICATION AND QUANTIFICATION OF POLYPHENOLS IN RHIZOMA SMILACIS CHINAE BY HPLC/DAD/ESI-MS/MS. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 2251-2260.	1.0	4
32	Chemical constituents comparison between <i>Rhizoma Smilacis Glabrae</i> and <i>Rhizoma Smilacis Chinae</i> by HPLC-DAD-MS/MS. Natural Product Research, 2013, 27, 277-281.	1.8	25
33	Antioxidant and anti-proliferative activity of Rhizoma Smilacis Chinae extracts and main constituents. Food Chemistry, 2012, 133, 140-145.	8.2	18
34	Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo, 2004, 18, 55-62.	1.3	172
35	<i>Smilax china</i> Polyphenols Stimulate Browning via β3-Adrenergic Receptor/AMP-Activated Protein Kinase α Signaling Pathway in 3T3-L1 Adipocytes. The American Journal of Chinese Medicine, 0, , 1-15.	3.8	1