
Alfredo de la Escosura-Muñiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988894/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	10.1	263
2	Label-Free Impedimetric Aptasensor for Ochratoxin-A Detection Using Iridium Oxide Nanoparticles. Analytical Chemistry, 2015, 87, 5167-5172.	6.5	208
3	Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 2017, 93, 72-86.	10.1	201
4	Nanochannels Preparation and Application in Biosensing. ACS Nano, 2012, 6, 7556-7583.	14.6	184
5	Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab on A Chip, 2014, 14, 4406-4414.	6.0	160
6	A Nanochannel/Nanoparticleâ€Based Filtering and Sensing Platform for Direct Detection of a Cancer Biomarker in Blood. Small, 2011, 7, 675-682.	10.0	136
7	Immunosensing using nanoparticles. Materials Today, 2010, 13, 24-34.	14.2	131
8	Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on A Chip, 2013, 13, 386-390.	6.0	111
9	Electrochemical analysis with nanoparticle-based biosystems. TrAC - Trends in Analytical Chemistry, 2008, 27, 568-584.	11.4	104
10	ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. Journal of Nanoparticle Research, 2009, 11, 2003-2011.	1.9	102
11	Rapid Identification and Quantification of Tumor Cells Using an Electrocatalytic Method Based on Gold Nanoparticles. Analytical Chemistry, 2009, 81, 10268-10274.	6.5	100
12	Simple Monitoring of Cancer Cells Using Nanoparticles. Nano Letters, 2012, 12, 4164-4171.	9.1	94
13	Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosensors and Bioelectronics, 2010, 26, 1715-1718.	10.1	92
14	Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosensors and Bioelectronics, 2010, 26, 1710-1714.	10.1	89
15	Design, Preparation, and Evaluation of a Fixed-Orientation Antibody/Gold-Nanoparticle Conjugate as an Immunosensing Label. ACS Applied Materials & Interfaces, 2013, 5, 10753-10759.	8.0	89
16	Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta, 2019, 1046, 123-131.	5.4	86
17	Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors, 2020, 10, 32.	4.7	86
18	Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosensors and Bioelectronics, 2013, 40, 24-31.	10.1	80

#	Article	IF	CITATIONS
19	Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosensors and Bioelectronics, 2015, 67, 511-515.	10.1	80
20	Alzheimer′s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 162-169.	10.1	70
21	Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified <i>Leishmania</i> DNA. Small, 2016, 12, 205-213.	10.0	70
22	Controlling the electrochemical deposition of silver onto gold nanoparticles: Reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosensors and Bioelectronics, 2009, 24, 2475-2482.	10.1	67
23	Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Research, 2015, 8, 3704-3714.	10.4	66
24	Detection of Circulating Cancer Cells Using Electrocatalytic Gold Nanoparticles. Small, 2012, 8, 3605-3612.	10.0	57
25	Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. Chemical Communications, 2010, 46, 9007.	4.1	56
26	Size-dependent direct electrochemical detection of gold nanoparticles: application in magnetoimmunoassays. Nanoscale, 2011, 3, 3350.	5.6	53
27	Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosensors and Bioelectronics, 2019, 141, 111407.	10.1	53
28	Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochemistry Communications, 2010, 12, 859-863.	4.7	52
29	Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab on A Chip, 2015, 15, 399-405.	6.0	48
30	Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta, 2020, 209, 120465.	5.5	48
31	Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosensors and Bioelectronics, 2015, 67, 107-114.	10.1	45
32	Electrochemical detection of proteins using nanoparticles: applications to diagnostics. Expert Opinion on Medical Diagnostics, 2010, 4, 21-37.	1.6	43
33	Nanochannels for electrical biosensing. TrAC - Trends in Analytical Chemistry, 2016, 79, 134-150.	11.4	42
34	Electrochemical quantification of gold nanoparticles based on their catalytic properties toward hydrogen formation: Application in magnetoimmunoassays. Electrochemistry Communications, 2010, 12, 1501-1504.	4.7	39
35	Fully printed one-step biosensing device using graphene/AuNPs composite. Biosensors and Bioelectronics, 2019, 129, 238-244.	10.1	39
36	Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosensors and Bioelectronics, 2019, 132, 132-135.	10.1	38

#	Article	IF	CITATIONS
37	Bifunctional Au@Pt/Au core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer's Disease Biomarker Detection. Analytical Chemistry, 2020, 92, 7209-7217.	6.5	38
38	DNA hybridization biosensors using polylysine modified SPCEs. Biosensors and Bioelectronics, 2008, 23, 1340-1346.	10.1	37
39	Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. Journal of Nanoparticle Research, 2008, 10, 97-106.	1.9	37
40	Alzheimer Disease Biomarker Detection Through Electrocatalytic Water Oxidation Induced by Iridium Oxide Nanoparticles. Electroanalysis, 2014, 26, 1287-1294.	2.9	37
41	Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer's Disease. Sensors, 2020, 20, 4748.	3.8	36
42	Quantum Dot Bioconjugates for Diagnostic Applications. Topics in Current Chemistry, 2020, 378, 35.	5.8	36
43	A DNA Aptasensor for Electrochemical Detection of Vascular Endothelial Growth Factor. Journal of Nanoscience and Nanotechnology, 2015, 15, 3411-3416.	0.9	35
44	A monoclonal antibody-based immunosensor for the electrochemical detection of imidacloprid pesticide. Analyst, The, 2019, 144, 2936-2941.	3.5	35
45	In Situ Plant Virus Nucleic Acid Isothermal Amplification Detection on Gold Nanoparticle-Modified Electrodes. Analytical Chemistry, 2019, 91, 4790-4796.	6.5	35
46	DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosensors and Bioelectronics, 2007, 22, 1048-1054.	10.1	33
47	In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes. Biosensors and Bioelectronics, 2018, 107, 62-68.	10.1	32
48	Nanoparticles as Emerging Labels in Electrochemical Immunosensors. Sensors, 2019, 19, 5137.	3.8	32
49	Low-Cost Strategy for the Development of a Rapid Electrochemical Assay for Bacteria Detection Based on AuAg Nanoshells. ACS Omega, 2018, 3, 18849-18856.	3.5	31
50	Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing. Nano Research, 2015, 8, 1180-1188.	10.4	27
51	Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 53-61.	3.3	27
52	Casein modified gold nanoparticles for future theranostic applications. Biosensors and Bioelectronics, 2013, 40, 271-276.	10.1	25
53	Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS Applied Materials & Interfaces, 2019, 11, 13140-13146.	8.0	23
54	Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. Sensors, 2020, 20, 2349.	3.8	20

ALFREDO DE LA

#	Article	IF	CITATIONS
55	Paperâ€Based Electrodes for Nanoparticles Detection. Particle and Particle Systems Characterization, 2013, 30, 662-666.	2.3	18
56	Electrocatalytic detection of aurothiomalate on carbon electrodes. Analytica Chimica Acta, 2004, 524, 355-363.	5.4	14
57	Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosensors and Bioelectronics, 2019, 127, 150-154.	10.1	13
58	Organic-based field effect transistors for protein detection fabricated by inkjet-printing. Organic Electronics, 2020, 84, 105794.	2.6	13
59	Catalytic Effect on Silver Electrodeposition of Gold Deposited on Carbon Electrodes. Electroanalysis, 2004, 16, 1561-1568.	2.9	10
60	Aurothiomalate as an electroactive label for the determination of immunoglobulin M using glassy carbon electrodes as immunoassay transducers. Sensors and Actuators B: Chemical, 2006, 114, 473-481.	7.8	10
61	Unfolded p53 as a Marker of Oxidative Stress in Mild Cognitive Impairment, Alzheimer's and Parkinson's Disease. Current Alzheimer Research, 2021, 18, 695-700.	1.4	10
62	Gold Nanoparticles: A Versatile Label for Affinity Electrochemical Biosensors. , 0, , 177-197.		9
63	Production and printing of graphene oxide foam ink for electrocatalytic applications. Electrochemistry Communications, 2019, 98, 6-9.	4.7	9
64	Electrochemical quantification of Ag2S quantum dots: evaluation of different surface coating ligands for bacteria determination. Mikrochimica Acta, 2020, 187, 169.	5.0	9
65	Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Analytical and Bioanalytical Chemistry, 2021, 413, 4111-4117.	3.7	9
66	Advances in quantum dots as diagnostic tools. Advances in Clinical Chemistry, 2022, 107, 1-40.	3.7	8
67	Electrical monitoring of infection biomarkers in chronic wounds using nanochannels. Biosensors and Bioelectronics, 2022, 209, 114243.	10.1	7
68	Lateral Flow Biosensors Based on Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 569-605.	1.3	6
69	Enhancing the electrocatalytic activity of palladium nanocluster tags by selective introduction of gold atoms: Application for a wound infection biomarker detection. Biosensors and Bioelectronics, 2022, 200, 113926.	10.1	6
70	Determination of human serum albumin using aurothiomalate as electroactive label. Analytical and Bioanalytical Chemistry, 2006, 384, 742-750.	3.7	5
71	Simple and rapid electrochemical quantification of water-stabilized HgSe nanoparticles of great concern in environmental studies. Talanta, 2019, 200, 72-77.	5.5	5
72	Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays. Springer Series in Materials Science, 2015, , 271-291.	0.6	4

#	Article	IF	CITATIONS
73	Control of Electronâ€transfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. Electroanalysis, 2016, 28, 1795-1802.	2.9	4
74	Nanoceria quantification based on its oxidative effect towards the ferrocyanide/ferricyanide system. Journal of Electroanalytical Chemistry, 2019, 840, 338-342.	3.8	4
75	Electrochemical Immunosensing Using Micro and Nanoparticles. Methods in Molecular Biology, 2009, 504, 145-155.	0.9	4
76	Application of Nanomaterials for DNA Sensing. Nucleic Acids and Molecular Biology, 2014, , 305-332.	0.2	4
77	Electrocatalytic Detection: Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified <i>Leishmania</i> DNA (Small 2/2016). Small, 2016, 12, 204-204.	10.0	2
78	Nanoparticle/Nanochannels-Based Electrochemical Biosensors. Nanoscience and Technology, 2015, , 205-223.	1.5	1
79	Nanoparticles and Inductively Coupled Plasma Mass Spectroscopy–Based Biosensing. , 0, , 355-376.		0
80	Nanoparticles for DNA, Protein, and Cell Electrochemical Detection. , 2014, , 209-241.		0
81	Gold Nanoparticle-Based Electrochemical DNA Biosensors Marı´a Pedrero, Paloma Ya´n˜ez-Seden˜o,. , 2012, , 121-158.		0
82	Polymeric Magnetic Microparticles as Electrochemical Immunosensing Platforms. , 2020, 60, .		0