De-Qi Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988830/publications.pdf

Version: 2024-02-01

		430874	477307
67	1,071	18	29
papers	citations	h-index	g-index
78	78	78	817
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Threeâ€inâ€One: Miniature Models of Natural Acylâ€Transfer Systems Enable Vectorâ€Selective Reaction on the Primary Side of Cyclodextrins. Chemistry - A European Journal, 2022, 28, .	3.3	1
2	An Ultimate Stereocontrol in Supramolecular Photochirogenesis: Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Sulfur-Linked \hat{l}^2 -Cyclodextrin Dimers. Journal of the American Chemical Society, 2019, 141, 9225-9238.	13.7	70
3	Synthesis of a dimeric 3î±-hydroxy-7î±,12î±-diamino-5î²-cholan-24-oate conjugate and its derivatives, and the effect of lipophilicity on their anion transport efficacy. Organic and Biomolecular Chemistry, 2017, 15, 2831-2840.	2.8	5
4	A one-pot synthetic method for the hetero-bifunctionalization of α-cyclodextrin at the secondary hydroxyl side with high clockwise–counterclockwise selectivity. Organic and Biomolecular Chemistry, 2017, 15, 4077-4080.	2.8	2
5	Synthesis, Anion Recognition, and Transmembrane Anionophoric Activity of Tripodal Diaminocholoyl Conjugates. Journal of Organic Chemistry, 2017, 82, 13368-13375.	3.2	15
6	Synthesis and binding behaviors of monomethyl cucurbit[6]uril. Tetrahedron Letters, 2011, 52, 4646-4649.	1.4	15
7	Diimine ligand as a novel chemiluminescence enhancer of luminol-containing compounds. Talanta, 2009, 77, 1761-1766.	5.5	2
8	pH-Controlled Supramolecular Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate with Capped ?-Cyclodextrins. Australian Journal of Chemistry, 2008, 61, 565.	0.9	16
9	Imidazolyl Cyclodextrins: Artificial Serine Proteases Enabling Regiospecific Reactions. Angewandte Chemie - International Edition, 2007, 46, 5024-5027.	13.8	29
10	Cerium complexes of cyclodextrin dimers as efficient catalysts for luminol chemiluminescence reactions. Organic and Biomolecular Chemistry, 2007, 5, 2932.	2.8	17
11	The first topologically controlled synthesis of doubly bridged \hat{l}^2 -cyclodextrin dimers. Chemical Communications, 2007, , 828-830.	4.1	8
12	Selective modification of \hat{l}^2 -cyclodextrin: an unexpected tandem reaction enables the cross-linking of C2A and C2BÂvia a sulfur atom. Chemical Communications, 2007, , 3157.	4.1	5
13	A Vector-Selective Reaction Enables Efficient Construction of Specific Topology upon the Primary Side of Î ² -Cyclodextrin. Organic Letters, 2007, 9, 4591-4594.	4.6	14
14	Hetero-bifunctional \hat{I}^3 -cyclodextrins having dansylcysteine and tosyl groups at two adjacent sugar units: synthesis and determination of regio-chemistry. Tetrahedron Letters, 2007, 48, 3267-3271.	1.4	16
15	Heptakis(6-deoxy-6-guanidino)-β-cyclodextrin: an artificial model for mitochondrial ADP/ATP carrier. Tetrahedron Letters, 2007, 48, 3479-3483.	1.4	24
16	Selective functionalization of \hat{l}^2 -cyclodextrin: efficient conversions of 2,3-alloepoxypyranosides to 2,3-mannoepithiopyranosides. Tetrahedron Letters, 2007, 48, 6665-6668.	1.4	7
17	Selective synthesis and ester cleavage property of 3A,2B-anhydro-3B-deoxy-3B-thio-β-cyclodextrin. Tetrahedron Letters, 2007, 48, 7493-7497.	1.4	11
18	Coumarin-conjugated cyclodextrins: remarkable enhancement of the chemical-to-light energy transfer efficiency. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 125-129.	1.6	1

#	Article	IF	CITATIONS
19	Clockwise $\hat{a} \in \text{``counterclockwise differentiation on the upper rim of a monofunctional \hat{l}^3-cyclodextrin: efficient topological control in the syntheses of capped cyclodextrins. Chemical Communications, 2006, , 5057-5059.$	4.1	14
20	Shortcut Synthesis of β-Cyclomannin from β-Cyclodextrin. Organic Letters, 2006, 8, 5733-5736.	4.6	3
21	Hetero-bifunctionalization of the secondary face of \hat{l}^2 -cyclodextrin: selective 3G-sulfonylation and subsequent 2G,3G-epoxidation of 3A-azido-3A-deoxy-altro- \hat{l}^2 -cyclodextrin. Tetrahedron Letters, 2006, 47, 6599-6602.	1.4	5
22	A facile sulfonylation method enabling direct syntheses of per(2-O-sulfonyl)- \hat{l}^2 -cyclodextrins. Tetrahedron Letters, 2006, 47, 8837-8840.	1.4	16
23	Enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A,6X-diamino-6A,6X-dideoxy-Î ³ -cyclodextrins: Manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochirogenesis. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 375-383.	3.9	60
24	Preparation of 2A,3A-alloepimino-2A,3A-dideoxy- \hat{l}^2 -cyclodextrin as a versatile scaffold candidate for the hetero-2A,3A-bifunctionalization. Tetrahedron Letters, 2005, 46, 1115-1118.	1.4	7
25	Synthesis of a Cycloallin Derivative from β-Cyclodextrin: Heptakis(2,3-dideoxy-2,3-epithio)-β-cycloallin. Angewandte Chemie - International Edition, 2005, 44, 4201-4204.	13.8	7
26	The first hetero-bifunctionalization of the secondary face of \hat{l}^2 -cyclodextrin: selective and efficient conversion of the A-ring of a 2A,2B-disulfonate to 2A,3A-epoxymannoside. Chemical Communications, 2005, , 3168.	4.1	7
27	Construction of a Fused Polycyclic Wall within the Cyclodextrin Belt To Ensure a Distorted Cavity: An Unusualtrans-Diequatorial Ring-Opening Reaction of Cyclodextrin Epoxide Rings. European Journal of Organic Chemistry, 2004, 2004, 3113-3118.	2.4	4
28	Selective modification of mono-altro- \hat{l}^2 -cyclodextrin: dependence of O-sulfonylation position on the shape of sulfonylating reactant. Tetrahedron Letters, 2004, 45, 3383-3386.	1.4	5
29	Selective mono-O-sulfonylation of A,B-di-altro- β-cyclodextrin by utilizing restricted orientation of a guest-type sulfonylating reactant in the elliptically distorted cavity: the 2A-O- and 3G-O-2-naphthalenesulfonates as a versatile scaffold to prepare artificial enzymes with controlling substrate orientation. Tetrahedron Letters, 2004, 45, 6899-6902.	1.4	2
30	2A,3A-Alloepithio-2A,3A-dideoxy- \hat{l}^2 -cyclodextrin: synthesis and application in the construction of rigid elliptical cavities with functionality at the secondary hydroxyl side. Tetrahedron Letters, 2004, 45, 9045-9048.	1.4	6
31	The First Successful Crystallographic Characterization of a Cyclodextrin Dimer: Efficient Synthesis and Molecular Geometry of a Doubly Sulfur-Bridged \hat{l}^2 -Cyclodextrin. Chemistry - A European Journal, 2003, 9, 3501-3506.	3.3	21
32	An efficient strategy for the modification of \hat{l} ±-cyclodextrin: direct conversion of one or two adjacent 6-OHs to phthalimides. Tetrahedron Letters, 2003, 44, 565-568.	1.4	19
33	Per(3-deoxy)- \hat{l}^3 -cyclomannin: a non-glucose cyclooligosaccharide featuring inclusion properties. Tetrahedron Letters, 2003, 44, 4641-4644.	1.4	13
34	Per(3-deoxy)-α-cyclomannin: ann-butanol hexahydrate inclusion complex. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o387-o389.	0.2	4
35	Guest differentiation in a 61,611-disubstituted \hat{l}^2 -cyclodextrin. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o408-o411.	0.2	0
36	Functionalization of Cyclodextrins via Reactions of 2,3-Anhydrocyclodextrins. Journal of Organic Chemistry, 2003, 68, 9456-9466.	3.2	58

#	Article	IF	CITATIONS
37	Fluorophore-capped cyclodextrins as efficient chemical-to-light energy converters. Chemical Communications, 2003, , 416-417.	4.1	10
38	Crystal structure of mono[3-(2-imidazolylthio)]-altro-β-cyclodextrin: elliptical distortion of the cavity and unique †Yin†Yang†stacking. Chemical Communications, 2003, , 1730-1731.	4.1	19
39	The first successful investigation into a cyclodextrin-based enzyme model as an efficient catalyst for luminol chemiluminescent reaction. Chemical Communications, 2002, , 730-731.	4.1	23
40	(Ethylenediaminetetraacetic Acid)cerium(IV) [CeIV(EDTA)] Complexes with Dual Hydrophobic Binding Sites as Highly Efficient Catalysts for the Hydrolysis of Phosphodiesters. Helvetica Chimica Acta, 2002, 85, 1496.	1.6	19
41	Synthesis and selective anion recognition of imidazolium cyclophanes. Tetrahedron, 2002, 58, 8993-8999.	1.9	71
42	Flexible Cyclooligosaccharides: Guest-Binding and Regio-selective Modification. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 323-328.	1.6	3
43	Amplification of the reactivity difference between two methylene groups of cyclodextrins via a cap. Chemical Communications, 2001, , 2706-2707.	4.1	29
44	Synthesis of fullerene–cyclodextrin conjugates. Tetrahedron Letters, 2001, 42, 6727-6729.	1.4	25
45	Selective sulfonylation of one of the 21 different hydroxyl groups of mono-altro-Î ² -cyclodextrin. Tetrahedron Letters, 2001, 42, 293-295.	1.4	10
46	Catalytic properties of novel cyclodextrin dimers in the hydrolytic cleavage ofp-nitrophenyl alkanoates. Journal of Physical Organic Chemistry, 2001, 14, 515-520.	1.9	3
47	Synergistic effect of cyclodextrin-based binuclear complexes in the hydrolysis of amide. Tetrahedron Letters, 2000, 41, 1825-1828.	1.4	8
48	Regioselective transannular disulfonylation on the 6A, 6C positions of \hat{l}_{\pm} -cyclodextrin. Tetrahedron Letters, 2000, 41, 6855-6857.	1.4	14
49	Selective synthesis and structure determination of 6A,6C,6E-tri(O-sulfonyl)- \hat{l}^2 -cyclodextrins. Tetrahedron Letters, 2000, 41, 8117-8120.	1.4	18
50	Restriction of guest rotation based on the distortion of a cyclodextrin cavity. Chemical Communications, 2000, , 541-542.	4.1	31
51	Does the abnormal ring opening of cyclodextrin-2,3-epoxide have generality?. Tetrahedron Letters, 1999, 40, 1513-1514.	1.4	11
52	Guest-induced conformational change in a flexible host: mono-altro- \hat{l}^2 -cyclodextrin. Tetrahedron: Asymmetry, 1999, 10, 1689-1696.	1.8	56
53	Molecular sugar bowl: γ-cyclodextrin with a disaccharide floor. Tetrahedron Letters, 1999, 40, 923-926.	1.4	14
54	Cyclodextrin-accelerated cleavage of phenyl esters: is it the 2-hydroxy or the 3-hydroxy that promotes the acyl transfer?. Chemical Communications, 1999, , 1045-1046.	4.1	12

#	Article	IF	Citations
55	Syntheses of imidazoliumâ€bridged cyclodextrin dimers and their catalytic properties in the hydrolytic cleavage of <i>p</i> à€nitrophenyl alkanoates. Chinese Journal of Chemistry, 1999, 17, 384-390.	4.9	12
56	Cyclodextrin-based class I aldolase enzyme mimics to catalyze crossed aldol condensations. Tetrahedron Letters, 1998, 39, 7673-7676.	1.4	37
57	Synthesis of Novel Squarylium Cyclophanes. Synthetic Communications, 1998, 28, 119-122.	2.1	1
58	Synthesis of Novel Cyclodextrin Trimers. Synthetic Communications, 1998, 28, 3845-3848.	2.1	11
59	Selective mono- and bis-condensations of isophthalaldehyde derivative with 6-(o-aminoanilino)cyclodextrins. Journal of the Chemical Society Perkin Transactions 1, 1997, , 3135-3136.	0.9	3
60	Regiospecifically multifunctional \hat{l}^2 -cyclodextrins with two or three glucose residues bearing imidazolyl groups at the C3 positions. Tetrahedron Letters, 1997, 38, 4599-4602.	1.4	11
61	Synthesis and Properties of Phenylenebisbenzimidazole Capped \hat{I}^2 -Cyclodextrins. Tetrahedron Letters, 1997, 38, 7593-7596.	1.4	4
62	The first complete set of authentic functional \hat{l}^2 -cyclodextrins with one imidazolyl group specifically attached to C-2 or C-3. Chemical Communications, 1996, , 821-822.	4.1	30
63	Synthesis and unique NMR behaviour of a novel capped $\hat{l}\pm$ -cyclodextrin. Chemical Communications, 1996, , 1943-1944.	4.1	9
64	Bifunctional \hat{l}^2 -cyclodextrins with two imidazolyl groups specifically attached to C3 positions. Tetrahedron Letters, 1996, 37, 7561-7564.	1.4	9
65	\hat{l}^2 -Cyclodextrin-TEBA: A New Catalyst System For Selective Synthesis of \hat{l}_{\pm} -Hydroxyacids. Synthetic Communications, 1994, 24, 43-46.	2.1	16
66	Direct Imidazolylmethylation of Phenols. Synthetic Communications, 1994, 24, 47-52.	2.1	13
67	Selective Mono- and Bis-Oxidation of 2,6- <i>bis</i>) (Hydroxy-methyl) phenols with Active Manganese Dioxide. Synthetic Communications, 1994, 24, 53-58.	2.1	15