
Shahla Shahsavandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988742/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tween 80 improves the infectivity of BCL1 cell-adapted infectious bursal disease virus. Journal of Virological Methods, 2022, 304, 114502.	2.1	0
2	Modulation of Immune Responses against HA1 Influenza Vaccine Candidate by B-lymphocyte Stimulator Cytokine in Mice. Iranian Journal of Allergy, Asthma and Immunology, 2022, 21, 207-214.	0.4	1
3	A Combination of Recombinant HA1-and Nucleoprotein-Based Chitosan Nanoparticles Induces Early and Potent Immune Responses Against the H9N2 Influenza Virus. Viral Immunology, 2022, , .	1.3	2
4	Induction of Immune Responses by Recombinant PH-1 Domain of Infectious Laryngotracheitis Virus Glycoprotein B in Chickens. Viral Immunology, 2021, 34, 552-558.	1.3	0
5	Comparative Evaluation of Mx and Alum as Bio and Conventional Adjuvants in Inducing Immune Responses by Influenza DNA Vaccine. Journal of Advances in Medical and Biomedical Research, 2021, 29, 331-338.	0.2	0
6	The Immunogenicity of a Novel Chimeric Hemagglutinin-Neuraminidase-Fusion Antigen from Newcastle Disease Virus by Oral Delivery of Transgenic Canola Seeds to Chickens. Molecular Biotechnology, 2020, 62, 344-354.	2.4	7
7	The Tween 80 Toxicity in Chicken Embryos and Effect on the Kinetics of Newcastle Disease Virus Replication. Iranian Journal of Toxicology, 2020, 14, 229-236.	0.3	2
8	TIR-TLR7 as a Molecular Adjuvant: Simultaneous Enhancing Humoral and Cell-Mediated Immune Responses Against Inactivated Infectious Bursal Disease Virus. Viral Immunology, 2019, 32, 252-257.	1.3	4
9	Evaluation of the Effects of Chitosan on Immune Responses due to Infectious Bursal Disease Virus (IBDV) Vaccine in Chicken. Vaccine Research, 2019, 6, 18-22.	0.3	0
10	Novel Applications of Immuno-bioinformatics in Vaccine and Bio-product Developments at Research Institutes. Archives of Razi Institute, 2019, 74, 219-233.	0.5	10
11	Recombinant VP2 expressed in baculovirus and adjuvanted with TIR-TLR7: a vaccine candidate against infectious bursal disease virus. Comparative Clinical Pathology, 2018, 27, 911-916.	0.7	2
12	Immunogenicity of the Multi-Epitopic Recombinant Glycoproteins of Newcastle Disease Virus: Implications for the Serodiagnosis Applications. Iranian Journal of Biotechnology, 2018, 16, 248-257.	0.3	5
13	Improvement Efficacy of Influenza Nanovaccine in Combination with Hemokinin-1 Molecular Adjuvant. Avicenna Journal of Medical Biotechnology, 2018, 10, 208-213.	0.3	3
14	Examining responses of chicken embryonic neural stem cell to infectious laryngotracheitis virus infections. Comparative Clinical Pathology, 2017, 26, 493-498.	0.7	2
15	Improvement influenza HA2 DNA vaccine cellular and humoral immune responses with Mx bio adjuvant. Biologicals, 2017, 46, 6-10.	1.4	4
16	Establishment of MDCK/FX Cell for Efficient Replication of Influenza Viruses. Jundishapur Journal of Microbiology, 2017, 10, .	0.5	0
17	Interfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By. Iranian Journal of Pharmaceutical Research, 2017, 16, 1147-1154.	0.5	5
18	An immunoinformatic assay to design bio adjuvanted vaccine against infectious bursal disease virus. Journal of Biology and Today's World, 2016, 5, .	0.1	2

Shahla Shahsavandi

#	Article	IF	CITATIONS
19	Interaction of embryonic chicken lung cell with dif-ferent strains of infectious laryngotracheitis virus in-fections. Journal of Biology and Today's World, 2016, 5, .	0.1	1
20	Expression of Factor X in BHK-21 Cells Promotes Low Pathogenic Influenza Viruses Replication. Advances in Virology, 2015, 2015, 1-6.	1.1	2
21	Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virologica Sinica, 2015, 30, 200-207.	3.0	20
22	In Silico Analysis of HA2/Mx Chimera Peptide for Developing an Adjuvanted Vaccine to Induce Immune Responses Against Influenza Viruses. Advanced Pharmaceutical Bulletin, 2015, 5, 629-636.	1.4	4
23	Replication Kinetic of Infectious Laryngotracheitis Virus in Embryonic Chicken Neural Stem Cell. Iranian Journal of Virology, 2015, 9, 7-12.	0.0	Ο
24	Evolutionary characterization of non-structural gene of H9N2 influenza viruses isolated from Asia during 2008–2012. Comparative Clinical Pathology, 2014, 23, 523-528.	0.7	1
25	In Silico Design of Multimeric HN-F Antigen as a Highly Immunogenic Peptide Vaccine Against Newcastle Disease Virus. International Journal of Peptide Research and Therapeutics, 2014, 20, 179-194.	1.9	10
26	Apoptotic response of chicken embryonic fibroblast cells to infectious bursal disease virus infections reflects viral pathogenicity. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 858-864.	1.5	9
27	Necrotic Response to Low Pathogenic H9N2 Influenza Virus in Chicken Hepatoma Cells. Jundishapur Journal of Microbiology, 2014, 8, e13770.	0.5	9
28	Impact of chicken-origin cells on adaptation of a low pathogenic influenza virus. Cytotechnology, 2013, 65, 419-424.	1.6	35
29	Dose- and Time-Dependent Apoptosis Induced by Avian H9N2 Influenza Virus in Human Cells. BioMed Research International, 2013, 2013, 1-7.	1.9	13
30	Replication Efficiency of Influenza A Virus H9N2: A Comparative Analysis Between Different Origin Cell Types. Jundishapur Journal of Microbiology, 2013, 6, .	0.5	4
31	Caspase Cleavage Motifs of Influenza Subtypes Proteins: Alternations May Switch Viral Pathogenicity. Iranian Journal of Virology, 2013, 7, 1-6.	0.0	Ο
32	Evolutionary characterization of hemagglutinin gene of H9N2 influenza viruses isolated from Asia. Research in Veterinary Science, 2012, 93, 234-239.	1.9	17
33	Phylogeny and evolution of Newcastle disease virus genotypes isolated in Asia during 2008–2011. Virus Genes, 2012, 45, 63-68.	1.6	55
34	Development of a Multiplex Polymerase Chain Reaction for Differential Diagnosis of Canary Pox Virus. Iranian Journal of Virology, 2012, 6, 19-23.	0.0	0
35	Development of rHA1-ELISA for specific and sensitive detection of H9 subtype influenza virus. Journal of Virological Methods, 2011, 171, 260-263.	2.1	17
36	Specific subtyping of influenza A virus using a recombinant hemagglutinin protein expressed in baculovirus. Molecular Biology Reports, 2011, 38, 3293-3298.	2.3	9

#	Article	IF	CITATIONS
37	Evaluation of antibody levels during simultaneous aflatoxicosis and vaccination against infectious laryngotracheitis in pullets. Biologicals, 2008, 36, 327-329.	1.4	1
38	New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription. Majallah-i DÄnishgÄh-i 'Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd, 0, , .	0.0	0