Frank Eisenhaber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988670/publications.pdf Version: 2024-02-01

FDANK FISENHARED

#	Article	IF	CITATIONS
1	The PICLS high-throughput screening method for agents extending cellular longevity identifies 2,5-anhydro-D-mannitol as novel anti-aging compound. GeroScience, 2023, 45, 141-158.	2.1	6
2	In memoriam of Narayanaswamy Srinivasan (1962–2021). Proteins: Structure, Function and Bioinformatics, 2022, 90, 909-911.	1.5	3
3	Iron Supplementation Delays Aging and Extends Cellular Lifespan through Potentiation of Mitochondrial Function. Cells, 2022, 11, 862.	1.8	10
4	Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates. Nature Genetics, 2022, 54, 62-72.	9.4	16
5	Optimizing the Parametrization of Homologue Classification in the Pan-Genome Computation for a Bacterial Species: Case Study Streptococcus pyogenes. Methods in Molecular Biology, 2022, 2449, 299-324.	0.4	1
6	To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biology, 2022, 20, .	1.7	10
7	Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 701120.	2.0	5
8	Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites. Biology Direct, 2021, 16, 4.	1.9	9
9	Editorial: Innovative Strategies From Synthetic Biology and Bacterial Pathways to Master Biochemical Environmental Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 828632.	2.0	0
10	Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. Cellular and Molecular Life Sciences, 2020, 77, 3423-3439.	2.4	19
11	Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site. Biology Direct, 2020, 15, 14.	1.9	6
12	Identification and engineering of 32 membered antifungal macrolactone notonesomycins. Microbial Cell Factories, 2020, 19, 71.	1.9	4
13	Hypocrisy Around Medical Patient Data: Issues of Access for Biomedical Research, Data Quality, Usefulness for the Purpose and Omics Data as Game Changer. Asian Bioethics Review, 2019, 11, 189-207.	0.9	6
14	Effect of the additional cysteine 503 of vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) and the mechanism of AhpF and subunit C assembling. Free Radical Biology and Medicine, 2019, 138, 10-22.	1.3	1
15	Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723. BMC Genomics, 2019, 20, 374.	1.2	9
16	Translational Informatics Management System (TIMS): Towards OMICS based clinical data management for long term curation of clinical studies. Journal of Open Source Software, 2019, 4, 1533.	2.0	0
17	In Memory of Vladimir B. Bajic (1952–2019). Genomics, Proteomics and Bioinformatics, 2019, 17, 473-474.	3.0	1
18	Active site CP-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins. Free Radical Biology and Medicine, 2018, 118, 59-70.	1.3	7

#	Article	IF	CITATIONS
19	The Geographic Variation of Surveillance and Zoonotic Spillover Potential of Influenza Viruses in Domestic Poultry and Swine. Open Forum Infectious Diseases, 2018, 5, ofy318.	0.4	5
20	Darkness in the Human Gene and Protein Function Space: Widely Modest or Absent Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 2000. Proteomics, 2018, 18, e1800093.	1.3	26
21	Function of a membrane-embedded domain evolutionarily multiplied in the GPI lipid anchor pathway proteins PIG-B, PIG-M, PIG-U, PIG-W, PIG-V, and PIG-Z. Cell Cycle, 2018, 17, 874-880.	1.3	14
22	Discovering novel SNPs that are correlated with patient outcome in a Singaporean cancer patient cohort treated with gemcitabine-based chemotherapy. BMC Cancer, 2018, 18, 555.	1.1	16
23	The 160K Natural Organism Library, a unique resource for natural products research. Nature Biotechnology, 2018, 36, 570-573.	9.4	27
24	Isolation and Identification of an Anthracimycin Analogue from <i>Nocardiopsis kunsanensis</i> , a Halophile from a Saltern, by Genomic Mining Strategy. Journal of Genomics, 2018, 6, 63-73.	0.6	13
25	Discovery of a novel splice variant of Fcar (CD89) unravels sequence segments necessary for efficient secretion: A story of bad signal peptides and good ones that nevertheless do not make it. Cell Cycle, 2017, 16, 457-467.	1.3	7
26	Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. Journal of Biological Chemistry, 2017, 292, 6667-6679.	1.6	5
27	Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3201-3214.	1.1	2
28	Prenylation of viral proteins by enzymes of the host: Virusâ€driven rationale for therapy with statins and FT/GGT1 inhibitors. BioEssays, 2017, 39, 1700014.	1.2	22
29	Protein function machinery: from basic structural units to modulation of activity. Current Opinion in Structural Biology, 2017, 42, 67-74.	2.6	48
30	Post-translational Regulation of Radioactive Iodine Therapy Response in Papillary Thyroid Carcinoma. Journal of the National Cancer Institute, 2017, 109, .	3.0	24
31	Charged residues next to transmembrane regions revisited: "Positive-inside rule―is complemented by the "negative inside depletion/outside enrichment rule― BMC Biology, 2017, 15, 66.	1.7	64
32	xHMMER3x2: Utilizing HMMER3's speed and HMMER2's sensitivity and specificity in the glocal alignment mode for improved large-scale protein domain annotation. Biology Direct, 2016, 11, 63.	1.9	4
33	The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment. Methods in Molecular Biology, 2016, 1415, 477-506.	0.4	15
34	A Reversible Association between Smc Coiled Coils Is Regulated by Lysine Acetylation and Is Required for Cohesin Association with the DNA. Molecular Cell, 2016, 63, 1044-1054.	4.5	27
35	Low resolution solution structure of an enzymatic active AhpC 10 :AhpF 2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. Journal of Structural Biology, 2016, 193, 13-22.	1.3	10
36	A Perspective on Rational Designs of a Hemagglutinin Based Universal Influenza Vaccine. Current Pharmaceutical Design, 2016, 22, 3547-3554.	0.9	2

#	Article	IF	CITATIONS
37	A Perspective on Rational Designs of a Hemagglutinin Based Universal Influenza Vaccine. Current Pharmaceutical Design, 2016, , .	0.9	1
38	Singleâ€residue posttranslational modification sites at the Nâ€terminus, Câ€terminus or inâ€between: To be or not to be exposed for enzyme access. Proteomics, 2015, 15, 2525-2546.	1.3	23
39	dissectHMMER: a HMMER-based score dissection framework that statistically evaluates fold-critical sequence segments for domain fold similarity. Biology Direct, 2015, 10, 39.	1.9	18
40	<scp>NMR</scp> studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2 ys peroxiredoxin machinery. FEBS Journal, 2015, 282, 4620-4638.	2.2	9
41	Crystallographic and solution studies of NAD+- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1139-1152.	0.5	12
42	HPMV: Human protein mutation viewer — relating sequence mutations to protein sequence architecture and function changes. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550028.	0.3	2
43	Unix interfaces, Kleisli, bucandin structure, etc. — The heroic beginning of bioinformatics in Singapore. Journal of Bioinformatics and Computational Biology, 2014, 12, 1471002.	0.3	0
44	Guest Editorial for the International Conference on Genome Informatics (GIW 2013). IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 5-6.	1.9	1
45	Potential Human Adaptation Mutation of Influenza A(H5N1) Virus, Canada. Emerging Infectious Diseases, 2014, 20, 1580-1582.	2.0	10
46	Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle, 2014, 13, 1912-1917.	1.3	41
47	Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from <i>Escherichia coli</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2848-2862.	2.5	47
48	10 years for the Journal of Bioinformatics and Computational Biology (2003–2013) — A retrospective. Journal of Bioinformatics and Computational Biology, 2014, 12, 1471001.	0.3	2
49	On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation. BMC Bioinformatics, 2014, 15, 166.	1.2	10
50	Key roles of the Escherichia coli AhpC C-terminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1932-1943.	0.5	21
51	Understanding the Functions of Peroxisomal Proteins: The Peroxisomal Proteome, Peroxisomal Import, Proteases and Other Protein Families and Their Network Organization: What Has Computational Biology Contributed?. , 2014, , 187-232.		0
52	International Conference on Genome Informatics (GIW 2013) in Singapore: introduction to the systems biology contributions. BMC Systems Biology, 2013, 7, 11.	3.0	0
53	How bioinformatics influences health informatics: usage of biomolecular sequences, expression profiles and automated microscopic image analyses for clinical needs and public health. Health Information Science and Systems, 2013, 1, 2.	3.4	32
54	MOTIF DISCOVERY WITH DATA MINING IN 3D PROTEIN STRUCTURE DATABASES: DISCOVERY, VALIDATION AND PREDICTION OF THE U-SHAPE ZINC BINDING ("HUF-ZINC") MOTIF. Journal of Bioinformatics and Computational Biology, 2013, 11, 1340008.	0.3	3

#	Article	IF	CITATIONS
55	AUTOMATIC PHYLOGENETIC CLASSIFICATION OF BACTERIAL BETA-LACTAMASE SEQUENCES INCLUDING STRUCTURAL AND ANTIBIOTIC SUBSTRATE PREFERENCE INFORMATION. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343011.	0.3	0
56	Low-resolution structure of the soluble domain GPAA1 (yGPAA170–247) of the glycosylphosphatidylinositol transamidase subunit GPAA1 from Saccharomyces cerevisiae. Bioscience Reports, 2013, 33, e00033.	1.1	6
57	SPACER: server for predicting allosteric communication and effects of regulation. Nucleic Acids Research, 2013, 41, W266-W272.	6.5	88
58	A SIMPLE SHORTCUT TO UNSUPERVISED ALIGNMENT-FREE PHYLOGENETIC GENOME GROUPINGS, EVEN FROM UNASSEMBLED SEQUENCING READS. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343005.	0.3	3
59	THE 24TH INTERNATIONAL CONFERENCE ON GENOME INFORMATICS, GIW2013, IN SINGAPORE. Journal of Bioinformatics and Computational Biology, 2013, 11, 1302003.	0.3	2
60	Transmembrane helix: simple or complex. Nucleic Acids Research, 2012, 40, W370-W375.	6.5	20
61	A DECADE AFTER THE FIRST FULL HUMAN GENOME SEQUENCING: WHEN WILL WE UNDERSTAND OUR OWN GENOME?. Journal of Bioinformatics and Computational Biology, 2012, 10, 1271001.	0.3	35
62	BEWARE OF MOVING TARGETS: REFERENCE PROTEOME CONTENT FLUCTUATES SUBSTANTIALLY OVER THE YEARS. Journal of Bioinformatics and Computational Biology, 2012, 10, 1250020.	0.3	12
63	Protein Sequence–Structure–Function–Network Links Discovered with the ANNOTATOR Software Suite: Application to ELYS/Mel-28. , 2012, , 111-143.		5
64	Investigation of causes of oseltamivir chemoprophylaxis failures during influenza A (H1N1-2009) outbreaks. Journal of Clinical Virology, 2011, 50, 104-108.	1.6	6
65	Structural insight into the glycosylphosphatidylinositol transamidase subunits PIG-K and PIG-S from yeast. Journal of Structural Biology, 2011, 173, 271-281.	1.3	12
66	Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins. Biology Direct, 2011, 6, 57.	1.9	28
67	Purification and crystallization of yeast glycosylphosphatidylinositol transamidase subunit PIG-S (PIG-S71–467). Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 896-899.	0.7	3
68	Nuclear import of a lipid-modified transcription factor. Cell Cycle, 2011, 10, 3897-3911.	1.3	40
69	Structural Requirements for Interaction of Peroxisomal Targeting Signal 2 and Its Receptor PEX7. Journal of Biological Chemistry, 2011, 286, 45048-45062.	1.6	49
70	THE JANUS-FACED E-VALUES OF HMMER2: EXTREME VALUE DISTRIBUTION OR LOGISTIC FUNCTION?. Journal of Bioinformatics and Computational Biology, 2011, 09, 179-206.	0.3	8
71	Arxes: retrotransposed genes required for adipogenesis. Nucleic Acids Research, 2011, 39, 3224-3239.	6.5	15
72	The Janus-faced E-values of HMMER2: extreme value distribution or logistic function?. Journal of Bioinformatics and Computational Biology, 2011, 9, 179-206.	0.3	4

#	Article	IF	CITATIONS
73	Detecting Atypical Examples of Known Domain Types by Sequence Similarity Searching: The SBASE Domain Library Approach. Current Protein and Peptide Science, 2010, 11, 538-549.	0.7	6
74	Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARÎ ³ . Cellular and Molecular Life Sciences, 2010, 67, 4049-4064.	2.4	38
75	Parameterization of disorder predictors for large-scale applications requiring high specificity by using an extended benchmark dataset. BMC Genomics, 2010, 11, S15.	1.2	42
76	The substrate specificity profile of human granzyme A. Biological Chemistry, 2010, 391, 983-97.	1.2	37
77	IS LGI2 THE CANDIDATE GENE FOR PARTIAL EPILEPSY WITH PERICENTRAL SPIKES?. Journal of Bioinformatics and Computational Biology, 2010, 08, 117-127.	0.3	8
78	RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. Journal of Cell Science, 2010, 123, 586-594.	1.2	97
79	More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology. PLoS Computational Biology, 2010, 6, e1000867.	1.5	56
80	Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence. Methods in Molecular Biology, 2010, 609, 365-384.	0.4	59
81	Integrated Tools for Biomolecular Sequence-Based Function Prediction as Exemplified by the ANNOTATOR Software Environment. Methods in Molecular Biology, 2010, 609, 257-267.	0.4	13
82	A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLOS Currents, 2010, 2, RRN1162.	1.4	68
83	Brief Overview of Bioinformatics Activities in Singapore. PLoS Computational Biology, 2009, 5, e1000508.	1.5	7
84	Blom7α Is a Novel Heterogeneous Nuclear Ribonucleoprotein K Homology Domain Protein Involved in Pre-mRNA Splicing That Interacts with SNEVPrp19-Pso4. Journal of Biological Chemistry, 2009, 284, 29193-29204.	1.6	12
85	ANNIE: integrated de novo protein sequence annotation. Nucleic Acids Research, 2009, 37, W435-W440.	6.5	51
86	A CH domain-containing N terminus in NuMA?. Protein Science, 2009, 11, 2281-2284.	3.1	16
87	Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites. Biology Direct, 2009, 4, 18.	1.9	73
88	Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle, 2008, 7, 3709-3719.	1.3	65
89	Towards Complete Sets of Farnesylated and Geranylgeranylated Proteins. PLoS Computational Biology, 2007, 3, e66.	1.5	144
90	Posttranslational Modifications and Subcellular Localization Signals: Indicators of Sequence Regions without Inherent 3D Structure?. Current Protein and Peptide Science, 2007, 8, 197-203.	0.7	48

#	Article	IF	CITATIONS
91	pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biology Direct, 2007, 2, 1.	1.9	131
92	Cleaning of raw peptide MS/MS spectra: Improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics, 2006, 6, 5117-5131.	1.3	35
93	Human Scc4 Is Required for Cohesin Binding to Chromatin, Sister-Chromatid Cohesion, and Mitotic Progression. Current Biology, 2006, 16, 863-874.	1.8	223
94	Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics, 2006, 7, 164.	1.2	29
95	Prediction of Protein Function. , 2006, , 39-54.		17
96	Sequence complexity of proteins and its significance in annotation. , 2005, , .		3
97	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282.	1.8	148
98	Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics, 2005, 6, 22.	1.2	49
99	SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Research, 2005, 33, 6868-6883.	6.5	46
100	The WD40 Propeller Domain of Cdh1 Functions as a Destruction Box Receptor for APC/C Substrates. Molecular Cell, 2005, 18, 543-553.	4.5	198
101	Refinement and prediction of protein prenylation motifs. Genome Biology, 2005, 6, R55.	13.9	173
102	Crystal structure of the p14/MP1 scaffolding complex: How a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10984-10989.	3.3	89
103	S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. Journal of Cell Science, 2004, 117, 3343-3351.	1.2	108
104	Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes and Development, 2004, 18, 2108-2119.	2.7	181
105	TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics, 2004, 20, 136-137.	1.8	113
106	Linking transcriptional mediators via the GACKIX domain super family. Current Biology, 2004, 14, R54-R55.	1.8	36
107	Two Fission Yeast Homologs of Drosophila Mei-S332 Are Required for Chromosome Segregation during Meiosis I and II. Current Biology, 2004, 14, 287-301.	1.8	203

1.6 86

#	Article	IF	CITATIONS
109	Prediction of sequence signals for lipid post-translational modifications: Insights from case studies. Proteomics, 2004, 4, 1614-1625.	1.3	42
110	Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biology, 2004, 5, R97.	13.9	32
111	MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biology, 2004, 5, R21.	13.9	76
112	A Sensitive Predictor for Potential GPI Lipid Modification Sites in Fungal Protein Sequences and its Application to Genome-wide Studies for Aspergillus nidulans, Candida albicans Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Journal of Molecular Biology, 2004, 337, 243-253.	2.0	262
113	Fat Mobilization in Adipose Tissue Is Promoted by Adipose Triglyceride Lipase. Science, 2004, 306, 1383-1386.	6.0	1,744
114	Myristoylation of viral and bacterial proteins. Trends in Microbiology, 2004, 12, 178-185.	3.5	148
115	TPR Subunits of the Anaphase-Promoting Complex Mediate Binding to the Activator Protein CDH1. Current Biology, 2003, 13, 1459-1468.	1.8	182
116	The Tudor domain †Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends in Biochemical Sciences, 2003, 28, 69-74.	3.7	448
117	The STIR-domain superfamily in signal transduction, development and immunity. Trends in Biochemical Sciences, 2003, 28, 226-229.	3.7	225
118	Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. BioEssays, 2003, 25, 367-385.	1.2	156
119	Glycosylphosphatidylinositol Lipid Anchoring of Plant Proteins. Sensitive Prediction from Sequence- and Genome-Wide Studies for Arabidopsis and Rice. Plant Physiology, 2003, 133, 1691-1701.	2.3	185
120	Motif Refinement of the Peroxisomal Targeting Signal 1 and Evaluation of Taxon-specific Differences. Journal of Molecular Biology, 2003, 328, 567-579.	2.0	161
121	Prediction of Peroxisomal Targeting Signal 1 Containing Proteins from Amino Acid Sequence. Journal of Molecular Biology, 2003, 328, 581-592.	2.0	199
122	Induction of Short Interspersed Nuclear Repeat-containing Transcripts in Epithelial Cells upon Infection with a Chicken Adenovirus. Journal of Molecular Biology, 2003, 328, 779-790.	2.0	12
123	Kleisins: A Superfamily of Bacterial and Eukaryotic SMC Protein Partners. Molecular Cell, 2003, 11, 571-575.	4.5	209
124	Protein prenyltransferases. Genome Biology, 2003, 4, 212.	13.9	106
125	Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Â, NMT and PTS1. Nucleic Acids Research, 2003, 31, 3631-3634.	6.5	78
126	On filtering false positive transmembrane protein predictions. Protein Engineering, Design and Selection, 2002, 15, 745-752.	1.0	128

#	Article	IF	CITATIONS
127	N-terminal N -myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences 1 1Edited by J. Thornton. Journal of Molecular Biology, 2002, 317, 523-540.	2.0	181
128	N-terminal N -myristoylation of proteins: prediction of substrate proteins from amino acid sequence 1 1Edited by J. Thornton. Journal of Molecular Biology, 2002, 317, 541-557.	2.0	222
129	Eco1 Is a Novel Acetyltransferase that Can Acetylate Proteins Involved in Cohesion. Current Biology, 2002, 12, 323-328.	1.8	228
130	Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends in Plant Science, 2001, 6, 463-470.	4.3	170
131	Molecular Cloning and Characterization of EndoGlyx-1, an EMILIN-like Multisubunit Glycoprotein of Vascular Endothelium. Journal of Biological Chemistry, 2001, 276, 48588-48595.	1.6	45
132	Can molecular mechanisms of biological processes be extracted from expression profiles? Case study: endothelial contribution to tumor-induced angiogenesis. BioEssays, 2001, 23, 1159-1175.	1.2	15
133	The Brix domain protein family – a key to the ribosomal biogenesis pathway?. Trends in Biochemical Sciences, 2001, 26, 345-347.	3.7	44
134	Molecular Cloning and Characterization of Endosialin, a C-type Lectin-like Cell Surface Receptor of Tumor Endothelium. Journal of Biological Chemistry, 2001, 276, 7408-7414.	1.6	133
135	Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Engineering, Design and Selection, 2001, 14, 17-25.	1.0	156
136	Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406, 593-599.	13.7	2,497
137	Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Current Biology, 2000, 10, 1557-1564.	1.8	237
138	Automated annotation of GPI anchor sites: case study C. elegans. Trends in Biochemical Sciences, 2000, 25, 340-341.	3.7	105
139	Hydrophobic regions on protein surfaces. Journal of Computer - Aided Molecular Design, 1999, 17, 27-42.	1.0	9
140	Prediction of Potential GPI-modification Sites in Proprotein Sequences. Journal of Molecular Biology, 1999, 292, 741-758.	2.0	417
141	Stops GeneJockeys being taken for a ride. Trends in Cell Biology, 1998, 8, 377-378.	3.6	2
142	Are knowledge-based potentials derived from protein structure sets discriminative with respect to amino acid types?. , 1998, 31, 225-246.		15
143	Homology-based fold predictions for Mycoplasma genitalium proteins 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 1998, 280, 323-326.	2.0	112
144	Predicting function: from genes to genomes and back 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 283, 707-725.	2.0	433

#	Article	IF	CITATIONS
145	Principles of Helix-Helix Packing in Proteins: The Helical Lattice Superposition Model. Journal of Molecular Biology, 1996, 255, 536-553.	2.0	113
146	Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods. , 1996, 25, 157-168.		72
147	Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins: Structure, Function and Bioinformatics, 1996, 25, 169-179.	1.5	37
148	Hydrophobic regions on protein surfaces. Derivation of the solvation energy from their area distribution in crystallographic protein structures. Protein Science, 1996, 5, 1676-1686.	3.1	40
149	Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation. Protein Engineering, Design and Selection, 1996, 9, 1121-1133.	1.0	50
150	Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins: Structure, Function and Bioinformatics, 1996, 25, 169-179.	1.5	70
151	The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry, 1995, 16, 273-284.	1.5	785
152	Comparison of atomic solvation parametric sets: Applicability and limitations in protein folding and binding. Protein Science, 1995, 4, 2499-2509.	3.1	84
153	Protein Structure Prediction: Recognition of Primary, Secondary, and Tertiary Structural Features from Amino Acid Sequence. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30, 1-94.	2.3	132
154	Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency. Journal of Computational Chemistry, 1993, 14, 1272-1280.	1.5	192
155	Rotamers: To be or not to be?. Journal of Molecular Biology, 1993, 230, 592-612.	2.0	230