Marco Preti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988029/publications.pdf

Version: 2024-02-01

623734 642732 28 614 14 23 h-index citations g-index papers 28 28 28 398 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Combining seismic retrofit with energy refurbishment for the sustainable renovation of RC buildings: a proof of concept. European Journal of Environmental and Civil Engineering, 2022, 26, 2475-2495.	2.1	67
2	EXPERIMENTAL INVESTIGATION ON ANCHORAGE PERFORMANCE OF EMBEDDED SMOOTH REBARS SUBJECTED TO CYCLICNG LOADING. , 2021 , , .		1
3	Self-centering walls strengthening by high-performance concrete: a feasibility study. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	15
4	Analytical and numerical modelling of existing RC frames with smooth rebars. Engineering Structures, 2021, 249, 113160.	5.3	1
5	Traditional vs. sliding-joint masonry infilled frames: Seismic reliability and EAL. Procedia Structural Integrity, 2020, 26, 383-392.	0.8	4
6	Lightweight FRC infill wall: in-plane and out-of-plane loading tests. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	0
7	Seismic reliability and loss assessment of RC frame structures with traditional and innovative masonry infills. Engineering Structures, 2020, 208, 110306.	5.3	46
8	Infill with sliding panels in presence of a full-height opening: Experimental in-plane response. Engineering Structures, 2019, 197, 109368.	5.3	15
9	Openings in infills with horizontal sliding joints: a parametric study to support the design. Bulletin of Earthquake Engineering, 2019, 17, 5101-5132.	4.1	13
10	Seismic infill–frame interaction of masonry walls partitioned with horizontal sliding joints: analysis and simplified modeling. Journal of Earthquake Engineering, 2019, 23, 1651-1677.	2.5	26
11	Dissipative Roof Diaphragm for the Seismic Retrofit of Listed Masonry Churches. Journal of Earthquake Engineering, 2019, 23, 1241-1261.	2.5	16
12	Earthen masonry infill walls: Use of wooden boards as sliding joints for seismic resistance. Construction and Building Materials, 2018, 184, 100-110.	7.2	31
13	Masonry infill construction and retrofit technique for the infill-frame interaction mitigation: Test results. Engineering Structures, 2017, 132, 597-608.	5.3	38
14	Lightweight extrados restraining elements for the anti-seismic retrofit of single leaf vaults. Engineering Structures, 2017, 141, 543-554.	5.3	14
15	Experimental cyclic and dynamic in-plane rocking response of a masonry transverse arch typical of historical churches. Engineering Structures, 2017, 147, 285-296.	5. 3	4
16	Numerical Investigation of the In-Plane Performance of Masonry-Infilled RC Frames with Sliding Subpanels. Journal of Structural Engineering, 2017, 143, .	3.4	43
17	SIMPLIFIED MODELING OF MASONRY INFILL WALLS WITH HORIZONTAL SLIDING JOINTS. , 2017, , .		1
18	Analysis of the inâ€plane response of earthen masonry infill panels partitioned by sliding joints. Earthquake Engineering and Structural Dynamics, 2016, 45, 1209-1232.	4.4	30

#	Article	lF	CITATION
19	Thin-folded Shell for the Renewal of Existing Wooden Roofs. International Journal of Architectural Heritage, 2016, 10, 797-816.	3.1	12
20	On the delamination phenomenon in the repair of timber beams with steel plates. Construction and Building Materials, 2016, 102, 1018-1028.	7.2	17
21	Design of masonry infill walls with sliding joints for earthquake structural damage control. , 2016, , 1317-1324.		4
22	Experimental testing of engineered masonry infill walls for post-earthquake structural damage control. Bulletin of Earthquake Engineering, 2015, 13, 2029-2049.	4.1	70
23	RC structural wall with unbonded tendons strengthened with high-performance fiber-reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 249-260.	3.1	24
24	In-plane behaviour of innovative masonry infills based on different configurations of wooden sliding joints. WIT Transactions on the Built Environment, $2015, \ldots$	0.0	4
25	Infill Walls with Sliding Joints to Limit Infill-Frame Seismic Interaction: Large-Scale Experimental Test. Journal of Earthquake Engineering, 2012, 16, 125-141.	2.5	94
26	Ductility of a Structural Wall with Spread Rebars Tested in Full Scale. Journal of Earthquake Engineering, 2011, 15, 1238-1259.	2.5	10
27	Seismic Vulnerability for Churches in Association with Transverse Arch Rocking. International Journal of Architectural Heritage, 2009, 3, 212-234.	3.1	10
28	Lightweight Ribs for the Strengthening of Single Leaf Vaults Undergoing Seismic Actions. Advanced Materials Research, 0, 133-134, 923-928.	0.3	4