Marco Preti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6988029/publications.pdf Version: 2024-02-01

Μλαςο Ραετι

#	Article	IF	CITATIONS
1	Infill Walls with Sliding Joints to Limit Infill-Frame Seismic Interaction: Large-Scale Experimental Test. Journal of Earthquake Engineering, 2012, 16, 125-141.	2.5	94
2	Experimental testing of engineered masonry infill walls for post-earthquake structural damage control. Bulletin of Earthquake Engineering, 2015, 13, 2029-2049.	4.1	70
3	Combining seismic retrofit with energy refurbishment for the sustainable renovation of RC buildings: a proof of concept. European Journal of Environmental and Civil Engineering, 2022, 26, 2475-2495.	2.1	67
4	Seismic reliability and loss assessment of RC frame structures with traditional and innovative masonry infills. Engineering Structures, 2020, 208, 110306.	5.3	46
5	Numerical Investigation of the In-Plane Performance of Masonry-Infilled RC Frames with Sliding Subpanels. Journal of Structural Engineering, 2017, 143, .	3.4	43
6	Masonry infill construction and retrofit technique for the infill-frame interaction mitigation: Test results. Engineering Structures, 2017, 132, 597-608.	5.3	38
7	Earthen masonry infill walls: Use of wooden boards as sliding joints for seismic resistance. Construction and Building Materials, 2018, 184, 100-110.	7.2	31
8	Analysis of the inâ€plane response of earthen masonry infill panels partitioned by sliding joints. Earthquake Engineering and Structural Dynamics, 2016, 45, 1209-1232.	4.4	30
9	Seismic infill–frame interaction of masonry walls partitioned with horizontal sliding joints: analysis and simplified modeling. Journal of Earthquake Engineering, 2019, 23, 1651-1677.	2.5	26
10	RC structural wall with unbonded tendons strengthened with high-performance fiber-reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 249-260.	3.1	24
11	On the delamination phenomenon in the repair of timber beams with steel plates. Construction and Building Materials, 2016, 102, 1018-1028.	7.2	17
12	Dissipative Roof Diaphragm for the Seismic Retrofit of Listed Masonry Churches. Journal of Earthquake Engineering, 2019, 23, 1241-1261.	2.5	16
13	Infill with sliding panels in presence of a full-height opening: Experimental in-plane response. Engineering Structures, 2019, 197, 109368.	5.3	15
14	Self-centering walls strengthening by high-performance concrete: a feasibility study. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	15
15	Lightweight extrados restraining elements for the anti-seismic retrofit of single leaf vaults. Engineering Structures, 2017, 141, 543-554.	5.3	14
16	Openings in infills with horizontal sliding joints: a parametric study to support the design. Bulletin of Earthquake Engineering, 2019, 17, 5101-5132.	4.1	13
17	Thin-folded Shell for the Renewal of Existing Wooden Roofs. International Journal of Architectural Heritage, 2016, 10, 797-816.	3.1	12
18	Seismic Vulnerability for Churches in Association with Transverse Arch Rocking. International Journal of Architectural Heritage, 2009, 3, 212-234.	3.1	10

MARCO PRETI

#	Article	IF	CITATIONS
19	Ductility of a Structural Wall with Spread Rebars Tested in Full Scale. Journal of Earthquake Engineering, 2011, 15, 1238-1259.	2.5	10
20	Lightweight Ribs for the Strengthening of Single Leaf Vaults Undergoing Seismic Actions. Advanced Materials Research, 0, 133-134, 923-928.	0.3	4
21	Experimental cyclic and dynamic in-plane rocking response of a masonry transverse arch typical of historical churches. Engineering Structures, 2017, 147, 285-296.	5.3	4
22	Traditional vs. sliding-joint masonry infilled frames: Seismic reliability and EAL. Procedia Structural Integrity, 2020, 26, 383-392.	0.8	4
23	Design of masonry infill walls with sliding joints for earthquake structural damage control. , 2016, , 1317-1324.		4
24	In-plane behaviour of innovative masonry infills based on different configurations of wooden sliding joints. WIT Transactions on the Built Environment, 2015, , .	0.0	4
25	EXPERIMENTAL INVESTIGATION ON ANCHORAGE PERFORMANCE OF EMBEDDED SMOOTH REBARS SUBJECTED TO CYCLICNG LOADING. , 2021, , .		1
26	SIMPLIFIED MODELING OF MASONRY INFILL WALLS WITH HORIZONTAL SLIDING JOINTS. , 2017, , .		1
27	Analytical and numerical modelling of existing RC frames with smooth rebars. Engineering Structures, 2021, 249, 113160.	5.3	1
28	Lightweight FRC infill wall: in-plane and out-of-plane loading tests. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	0