List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6987421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Worldwide Potential for Quinoa (Chenopodium quinoaWilld.). Food Reviews International, 2003, 19, 167-177.	8.4	349
2	The Resistance of Quinoa (Chenopodium quinoaWilld.) to Adverse Abiotic Factors. Food Reviews International, 2003, 19, 99-109.	8.4	323
3	Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2011, 62, 185-193.	4.8	284
4	Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 2013, 92, 43-54.	4.2	263
5	The Global Expansion of Quinoa: Trends and Limits. Frontiers in Plant Science, 2016, 7, 622.	3.6	256
6	Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 2014, 34, 349-359.	5.3	244
7	ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum) Tj ETQq1 1 0.784	314 rgBT /(3.8	Dverlock 10 236
8	Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 2012, 55, 132-138.	3.7	217
9	Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany, 2006, 57, 3727-3735.	4.8	198
10	Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environmental and Experimental Botany, 2005, 54, 33-40.	4.2	191
11	Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 2013, 170, 906-914.	3.5	185
12	Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research, 2007, 100, 117-124.	5.1	182
13	Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (<i>Chenopodium quinoa </i>). Physiologia Plantarum, 2012, 146, 26-38.	5.2	181
14	Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy, 2000, 13, 11-25.	4.1	174
15	Feeding the world: genetically modified crops versus agricultural biodiversity. Agronomy for Sustainable Development, 2013, 33, 651-662.	5.3	168
16	Varietal differences of quinoa's tolerance to saline conditions. Plant and Soil, 2012, 357, 117-129.	3.7	149
17	Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 2014, 34, 13-30.	2.1	146
18	Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 2005, 22, 131-139.	4.1	142

#	Article	IF	CITATIONS
19	Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agricultural Water Management, 2010, 98, 403-413.	5.6	139
20	Improving crop production in the arid Mediterranean climate. Field Crops Research, 2012, 128, 34-47.	5.1	136
21	Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium) Tj ETQq1	1 0.784314	4 rgBT /Overla
22	Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Horticulturae, 2006, 109, 113-117.	3.6	133
23	Quinoa - Morphology, phenology and prospects for its production as a new crop in Europe. European Journal of Agronomy, 1993, 2, 19-29.	4.1	131
24	The Situation for Quinoa and Its Production in Southern Bolivia: From Economic Success to Environmental Disaster. Journal of Agronomy and Crop Science, 2011, 197, 390-399.	3.5	127
25	Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying. Journal of Agronomy and Crop Science, 2011, 197, 348-360.	3.5	126
26	Quinoa – a Model Crop for Understanding Salt-tolerance Mechanisms in Halophytes. Plant Biosystems, 2016, 150, 357-371.	1.6	119
27	Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 2007, 26, 471-475.	4.1	117
28	Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management, 2003, 60, 119-134.	5.6	110
29	The Potential for Utilizing the Seed Crop Amaranth (<i>Amaranthus</i> spp.) in East Africa as an Alternative Crop to Support Food Security and Climate Change Mitigation. Journal of Agronomy and Crop Science, 2015, 201, 321-329.	3.5	110
30	Agroclimatic constraints for rainfed agriculture in the Bolivian Altiplano. Journal of Arid Environments, 2007, 71, 109-121.	2.4	106
31	Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Functional Plant Biology, 2016, 43, 632.	2.1	104
32	Global expansion of quinoa and challenges for the Andean region. Global Food Security, 2020, 26, 100429.	8.1	100
33	Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa. International Journal of Molecular Sciences, 2013, 14, 9267-9285.	4.1	96
34	Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management, 2012, 109, 20-29.	5.6	92
35	Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes. European Journal of Agronomy, 2008, 28, 65-73.	4.1	84
36	Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research, 2014, 120, 263-272.	2.9	83

#	Article	IF	CITATIONS
37	Sensitivity of Two Quinoa (<i>Chenopodiumquinoa</i> Willd.) Varieties to Progressive Drought Stress. Journal of Agronomy and Crop Science, 2014, 200, 12-23.	3.5	81
38	lonic and photosynthetic homeostasis in quinoa challenged by salinity and drought – mechanisms of tolerance. Functional Plant Biology, 2015, 42, 136.	2.1	81
39	Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. Journal of Agronomy and Crop Science, 2016, 202, 445-453.	3.5	76
40	Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology, 2016, 43, 75.	2.1	76
41	Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Scientia Horticulturae, 2014, 172, 109-116.	3.6	74
42	Cultivation of quinoa (<i>Chenopodium quinoa</i>) under temperate climatic conditions in Denmark. Journal of Agricultural Science, 1994, 122, 47-52.	1.3	73
43	Ecophysiological Analysis Of Drought And Salinity Stress Of Quinoa (Chenopodium Quinoawilld.). Food Reviews International, 2003, 19, 111-119.	8.4	73
44	Effects of Salinity and Soil–Drying on Radiation Use Efficiency, Water Productivity and Yield of Quinoa (<i>Chenopodium quinoa</i> Willd.). Journal of Agronomy and Crop Science, 2012, 198, 173-184.	3.5	68
45	The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science, 2017, 203, 603-613.	3.5	65
46	Antioxidative Response of Quinoa Exposed to Isoâ€Osmotic, Ionic and Nonâ€Ionic Salt Stress. Journal of Agronomy and Crop Science, 2015, 201, 452-460.	3.5	62
47	Biochar Mitigates Combined Effects of Drought and Salinity Stress in Quinoa. Agronomy, 2020, 10, 912.	3.0	62
48	Measurement and modelling of ABA signalling in potato (Solanum tuberosum L.) during partial root-zone drying. Environmental and Experimental Botany, 2008, 63, 385-391.	4.2	61
49	Using our agrobiodiversity: plant-based solutions to feed the world. Agronomy for Sustainable Development, 2015, 35, 1217-1235.	5.3	58
50	Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Functional Plant Biology, 2017, 44, 665.	2.1	58
51	Cultivation of Quinoa on the Peruvian Altiplano. Food Reviews International, 2003, 19, 31-41.	8.4	57
52	Quinoa in Morocco – Effect of Sowing Dates on Development and Yield. Journal of Agronomy and Crop Science, 2014, 200, 371-377.	3.5	57
53	Deficit Irrigation and Organic Compost Improve Growth and Yield of Quinoa and Pea. Journal of Agronomy and Crop Science, 2014, 200, 390-398.	3.5	55
54	Quinoa's Potential in the Mediterranean Region. Journal of Agronomy and Crop Science, 2014, 200, 344-360.	3.5	55

4

SVEN-ERIK JACOBSEN

#	Article	IF	CITATIONS
55	Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 2020, 71, 5333-5347.	4.8	49
56	Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 2017, 104, 156-163.	5.2	48
57	Title is missing!. Euphytica, 1997, 96, 41-48.	1.2	47
58	Yield potential and salt tolerance of quinoa on saltâ€degraded soils of Pakistan. Journal of Agronomy and Crop Science, 2019, 205, 13-21.	3.5	47
59	Nitrogen Sustains Seed Yield of Quinoa Under Intermediate Drought. Journal of Agronomy and Crop Science, 2016, 202, 281-291.	3.5	46
60	Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turkish Journal of Biology, 2014, 38, 208-218.	0.8	44
61	Saponin seed priming improves salt tolerance in quinoa. Journal of Agronomy and Crop Science, 2018, 204, 31-39.	3.5	43
62	Growth and Ionic Content of Quinoa Under Saline Irrigation. Journal of Agronomy and Crop Science, 2014, 200, 246-260.	3.5	38
63	Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 2018, 51, 86-93.	3.4	38
64	Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science, 2015, 66, 993.	1.5	37
65	A Short Overview of Measures for Securing Water Resources for Irrigated Crop Production. Journal of Agronomy and Crop Science, 2014, 200, 333-343.	3.5	36
66	A Crossing Method for Quinoa. Sustainability, 2015, 7, 3230-3243.	3.2	36
67	The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (<i>Chenopodium quinoa</i> Willd.) productivity. Desalination and Water Treatment, 2014, 52, 2208-2213.	1.0	35
68	Saline Water Irrigation of Quinoa and Chickpea: Seedling Rate, Stomatal Conductance and Yield Responses. Journal of Agronomy and Crop Science, 2014, 200, 378-389.	3.5	31
69	A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environmental and Experimental Botany, 2017, 141, 154-160.	4.2	30
70	Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress. Plants, 2020, 9, 672.	3.5	30
71	Differentiation of Photoperiod-Induced ABA and Soluble Sugar Responses of Two Quinoa (Chenopodium quinoa Willd.) Cultivars. Journal of Plant Growth Regulation, 2014, 33, 562-570.	5.1	29

Photoperiodic effect on flowering and seed development in quinoa (<i>Chenopodium) Tj ETQq0 0 0 rgBT /Overlock $10_{0.6}$ Tf 50 62_{27} Td (quinos) Td (quinos)

#	Article	IF	CITATIONS
73	Weed Harrowing and Inter-Row Hoeing in Organic Grown Quinoa (<i>Chenopodium Quinoa</i>) Tj ETQq1 1 0.78	4314 rgBT	/Qverlock
74	First Report of Downy Mildew of Quinoa Caused by Peronospora farinosa f. sp. chenopodii in Denmark. Plant Disease, 2002, 86, 1175-1175.	1.4	25
75	Photoperiodic effects on short-pulse 14C assimilation and overall carbon and nitrogen allocation patterns in contrasting quinoa cultivars. Environmental and Experimental Botany, 2014, 104, 9-15.	4.2	23
76	Developmental stability of quinoa under European conditions. Industrial Crops and Products, 1998, 7, 169-174.	5.2	22
77	Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. Physiologia Plantarum, 2020, 168, 27-37.	5.2	22
78	Effect of dietary inclusion of quinoa on broiler growth performance. Animal Feed Science and Technology, 1997, 65, 5-14.	2.2	19
79	New Climate-Proof Cropping Systems in Dry Areas of the Mediterranean Region. Journal of Agronomy and Crop Science, 2014, 200, 399-401.	3.5	19
80	Physiological characteristics and irrigation water productivity of quinoa (<i>Chenopodium) Tj ETQq0 0 0 rgBT /Ov from Southern Iran. Journal of Agronomy and Crop Science, 2020, 206, 390-404.</i>	erlock 10 T 3.5	f 50 467 To 19
81	Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environmental Geochemistry and Health, 2022, 44, 1487-1500.	3.4	19
82	Effects of quinoa hull meal on piglet performance and intestinal epithelial physiology. Journal of Animal Physiology and Animal Nutrition, 2012, 96, 198-205.	2.2	18
83	Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean Journal of Agricultural Research, 2020, 80, 290-302.	1.1	18
84	What is Wrong With the Sustainability of Quinoa Production in Southern Bolivia – A Reply to Winkel etÂal. (2012). Journal of Agronomy and Crop Science, 2012, 198, 320-323.	3.5	17
85	Some Agronomic Strategies for Organic Quinoa (<i>Chenopodium quinoa</i> Willd.). Journal of Agronomy and Crop Science, 2016, 202, 454-463.	3.5	17
86	The effect of lactic acid bacteria inoculation, molasses, or wilting on the fermentation quality and nutritive value of amaranth (Amaranthus hypochondriaus) silage1. Journal of Animal Science, 2018, 96, 3983-3992.	0.5	17
87	Assessing the Nutritional Value of Root and Tuber Crops from Bolivia and Peru. Foods, 2019, 8, 526.	4.3	17
88	Validating a core collection of Peruvian quinoa germplasm. Genetic Resources and Crop Evolution, 1999, 46, 285-290.	1.6	15
89	Integrated approach for the quality assessment of freshwater resources in a vineyard area (South) Tj ETQq1 1 0.78	34314 rgB ⁻ 2.7	T_/Overlock 13
90	Nutritional and antinutritional compounds in leaves of quinoa. Food Bioscience, 2022, 45, 101494.	4.4	13

#	Article	IF	CITATIONS
91	Water Harvesting for Improved Water Productivity in Dry Environments of the Mediterranean Region Case study: Pistachio in Turkey. Journal of Agronomy and Crop Science, 2014, 200, 361-370.	3.5	11
92	Germination Responses of Cañahua (<i>Chenopodium pallidicaule</i> Aellen) to Temperature and Sowing Depth: A Crop Growing Under Extreme Conditions. Journal of Agronomy and Crop Science, 2016, 202, 542-553.	3.5	10
93	Impact of natural and synthetic growth enhancers on the productivity and yield of quinoa () Tj ETQq1 1 0.784314 Agronomy and Crop Science, 0, , .	ł rgBT /O∨ 3.5	erlock 10 Tí 10
94	Seed Shattering of Cañahua (<i>Chenopodium pallidicaule</i> Aellen). Journal of Agronomy and Crop Science, 2017, 203, 254-267.	3.5	8
95	Defoliation timing for optimal leaf nutrition in dualâ€use amaranth production systems. Journal of the Science of Food and Agriculture, 2020, 100, 4745-4755.	3.5	7
96	Application of natural and synthetic growth promoters improves the productivity and quality of quinoa crop through enhanced photosynthetic and antioxidant activities. Plant Physiology and Biochemistry, 2022, 182, 1-10.	5.8	7
97	Current uses of Andean Roots and Tuber Crops in South American gourmet restaurants. International Journal of Gastronomy and Food Science, 2020, 22, 100270.	3.0	6
98	The Extraordinary Salt Tolerance of Quinoa. Environment & Policy, 2020, , 125-143.	0.4	6
99	Horizontal, Technical Cooperation in Research on Quinoa (Chenopodium quinoaWilld.). Food Reviews International, 2003, 19, 25-29.	8.4	5
100	Drought and Salinity Differently Affect Growth and Secondary Metabolites of "Chenopodium quinoa Willd―Seedlings. , 2016, , 259-275.		4
101	Physiological response cascade of spring wheat to soil warming and drought. Crop and Pasture Science, 2016, 67, 480.	1.5	4
102	Trends and drivers of on-farm conservation of the root legume ahipa (Pachyrhizus ahipa) in Bolivia over the period 1994/96–2012. Genetic Resources and Crop Evolution, 2018, 65, 449-469.	1.6	4
103	Cañahua (Chenopodium pallidicaule): A Promising New Crop for Arid Areas. Environment & Policy, 2020, , 221-243.	0.4	4
104	A Comparative Analysis of Salinity and Nickel Tolerance of Tomato (<i>Solanum lycopersicum</i> L.). Communications in Soil Science and Plant Analysis, 2019, 50, 2294-2308.	1.4	2
105	Current Production and Potential of Quinoa (Chenopodium quinoaWilld.) in Peru. Food Reviews International, 2003, 19, 149-154.	8.4	1
106	A Model for Quantification of Temperature Profiles via Germination Times. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 87-101.	1.4	1
107	Sustainable water use securing food production in dry areas of the Mediterranean region – an introduction to a new EU FP7 Project. IOP Conference Series: Earth and Environmental Science, 2009, 6, 372020.	0.3	0