Arūnas BaltuÅ;nikas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6987257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Influence of Expanded Glass and Expanded Clay on Lightweight Aggregate Shotcrete Properties. Materials, 2022, 15, 1674.	2.9	2
2	Synergic effect between two pozzolans: Clinoptilolite and silica gel by-product in a ternary blend of a Portland cement system. Construction and Building Materials, 2022, 344, 128155.	7.2	5
3	Alkali Activated Binders Based on Biomass Bottom Ash and Silica By-Product Blends. Waste and Biomass Valorization, 2021, 12, 1095-1105.	3.4	8
4	The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Materials Chemistry and Physics, 2021, 258, 123846.	4.0	17
5	The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. Minerals (Basel, Switzerland), 2021, 11, 123.	2.0	5
6	Conversion of silica by-product into zeolites by thermo-sonochemical treatment. Ultrasonics Sonochemistry, 2021, 72, 105426.	8.2	9
7	Preparation of Sorbents Containing Straetlingite Phase from Zeolitic By-Product and Their Performance for Ammonium Ion Removal. Molecules, 2021, 26, 3020.	3.8	1
8	The Using of Concrete Wash Water from Ready Mixed Concrete Plants in Cement Systems. Materials, 2021, 14, 2483.	2.9	5
9	Porous alkali-activated materials based on municipal solid waste incineration ash with addition of phosphogypsum powder. Construction and Building Materials, 2021, 301, 123962.	7.2	17
10	Synergistic effect of dry sludge from waste wash water of concrete plants and zeolitic by-product on the properties of ternary blended ordinary Portland cements. Journal of Cleaner Production, 2020, 244, 118493.	9.3	8
11	Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum. Applied Sciences (Switzerland), 2020, 10, 5190.	2.5	14
12	Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Scientific Reports, 2020, 10, 352.	3.3	19
13	Effect of AlF3 production waste on the processes of hydration and hardening of the alkali-activated Portland cement with sodium silicate hydrate. Journal of Thermal Analysis and Calorimetry, 2019, 138, 879-887.	3.6	8
14	Zeolitized bottom ashes from biomass combustion as cement replacing components. Construction and Building Materials, 2018, 168, 988-994.	7.2	5
15	Alkali-activated blends of calcined AlF3 production waste and clay. Ceramics International, 2018, 44, 12573-12579.	4.8	7
16	The influence of sulphur slime on the properties of alkali binding material from biomass bottom ashes. IOP Conference Series: Materials Science and Engineering, 2018, 442, 012015.	0.6	1
17	The utilization of biomass bottom ashes in cement system. Journal of Sustainable Architecture and Civil Engineering, 2016, 14, .	0.5	1
18	Influence of zeolitized perlite on blended cement properties. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 285-292.	0.7	1

#	Article	IF	CITATIONS
19	Blended Cements Produced With Synthetic Zeolite Made from Industrial By-Product. Medziagotyra, 2015, 21, .	0.2	3
20	Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica. Ultrasonics Sonochemistry, 2015, 27, 515-521.	8.2	31
21	Effect of AlF3 Production Waste on the Properties of Hardened Cement Paste. Medziagotyra, 2012, 18, .	0.2	5
22	Utilization of by-product waste silica in concrete - based materials. Materials Research, 2012, 15, 561-567.	1.3	29
23	Production of Expanded Clay Pellets by Using Non-selfbloating Clay, Lakes Sapropel and Glycerol. Medziagotyra, 2011, 17, .	0.2	3
24	MODIFIED SAWDUST CONCRETE. Journal of Civil Engineering and Management, 2000, 6, 113-119.	0.0	1