Elisabetta Ferraro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6987181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1 ^{G93A} mice. British Journal of Pharmacology, 2022, 179, 1732-1752.	2.7	21
2	Evaluation of Browning Markers in Subcutaneous Adipose Tissue of Newly Diagnosed Gastrointestinal Cancer Patients with and without Cachexia. Cancers, 2022, 14, 1948.	1.7	9
3	Advance in the Diagnostics and Management of Musculoskeletal Diseases. Diagnostics, 2022, 12, 1588.	1.3	4
4	Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites, 2022, 12, 663.	1.3	2
5	HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	30
6	Microglia Morphological Changes in the Motor Cortex of hSOD1G93A Transgenic ALS Mice. Brain Sciences, 2021, 11, 807.	1.1	6
7	Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. International Journal of Molecular Sciences, 2021, 22, 9007.	1.8	5
8	Pilocytic Astrocytoma-Derived Cells in Peripheral Blood: A Case Report. Frontiers in Oncology, 2021, 11, 737730.	1.3	4
9	Sarcopenia Diagnosis: Reliability of the Ultrasound Assessment of the Tibialis Anterior Muscle as an Alternative Evaluation Tool. Diagnostics, 2021, 11, 2158.	1.3	21
10	Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1G93A Mice Predates Disease Onset and Is A Promising Therapeutic Target. IScience, 2020, 23, 101087.	1.9	55
11	Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging, 2020, 12, 13939-13957.	1.4	19
12	The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2019, 30, 1553-1598.	2.5	82
13	Metabolic Reprogramming Promotes Myogenesis During Aging. Frontiers in Physiology, 2019, 10, 897.	1.3	19
14	nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death and Disease, 2019, 10, 354.	2.7	9
15	Superhydrophobic lab-on-chip measures secretome protonation state and provides a personalized risk assessment of sporadic tumour. Npj Precision Oncology, 2018, 2, 26.	2.3	20
16	Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	1.9	237
17	The mitochondrial metabolic reprogramming agent trimetazidine as an â€~exercise mimetic' in cachectic C26â€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 954-973.	2.9	63
18	Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8, 113938-113956.	0.8	29

ELISABETTA FERRARO

#	Article	IF	CITATIONS
19	CXCL12 prolongs naive CD4 + T lymphocytes survival via activation of PKA, CREB and Bcl2 and BclXl up-regulation. International Journal of Cardiology, 2016, 224, 206-212.	0.8	11
20	Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 449-457.	2.9	44
21	Animal models of cardiac cachexia. International Journal of Cardiology, 2016, 219, 105-110.	0.8	27
22	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
23	Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice. Neurobiology of Disease, 2016, 91, 21-36.	2.1	36
24	Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cellular and Molecular Life Sciences, 2015, 72, 4173-4191.	2.4	7
25	Altered Mitochondria Morphology and Cell Metabolism in Apaf1-Deficient Cells. PLoS ONE, 2014, 9, e84666.	1.1	11
26	Microvascular inflammation in atherosclerosis. IJC Metabolic & Endocrine, 2014, 3, 1-7.	0.5	22
27	<i>S</i> -Nitrosoglutathione Reductase Deficiency-Induced <i>S</i> -Nitrosylation Results in Neuromuscular Dysfunction. Antioxidants and Redox Signaling, 2014, 21, 570-587.	2.5	42
28	Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy. Antioxidants and Redox Signaling, 2014, 21, 154-176.	2.5	157
29	The metabolic modulator trimetazidine triggers autophagy and counteracts stressâ€induced atrophy in skeletal muscle myotubes. FEBS Journal, 2013, 280, 5094-5108.	2.2	39
30	Early Decrease in Respiration and Uncoupling Event Independent of CytochromecRelease in PC12 Cells Undergoing Apoptosis. International Journal of Cell Biology, 2012, 2012, 1-11.	1.0	5
31	Molecular control of neuromuscular junction development. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 13-23.	2.9	47
32	The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage. Cell Death and Differentiation, 2011, 18, 516-527.	5.0	22
33	Apaf1 plays a pro-survival role by regulating centrosome morphology and function. Journal of Cell Science, 2011, 124, 3450-3463.	1.2	41
34	Apoptosome Structure and Regulation. , 2010, , 27-39.		2
35	Foregut separation and tracheo-oesophageal malformations: The role of tracheal outgrowth, dorso-ventral patterning and programmed cell death. Developmental Biology, 2010, 337, 351-362.	0.9	54
36	Apoptosis is not required for mammalian neural tube closure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8233-8238.	3.3	83

ELISABETTA FERRARO

#	Article	IF	CITATIONS
37	Increased spermine oxidase (SMO) activity as a novel differentiation marker of myogenic C2C12 cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 934-944.	1.2	29
38	Faf1 is expressed during neurodevelopment and is involved in Apaf1-dependent caspase-3 activation in proneural cells. Cellular and Molecular Life Sciences, 2008, 65, 1780-1790.	2.4	11
39	Intracellular bacteriolysis triggers a massive apoptotic cell death in Shigella-infected epithelial cells. Microbes and Infection, 2008, 10, 1114-1123.	1.0	8
40	Apoptosome-deficient Cells Lose Cytochrome <i>c</i> through Proteasomal Degradation but Survive by Autophagy-dependent Glycolysis. Molecular Biology of the Cell, 2008, 19, 3576-3588.	0.9	47
41	Autophagic and apoptotic response to stress signals in mammalian cells. Archives of Biochemistry and Biophysics, 2007, 462, 210-219.	1.4	162
42	Apoptosome impairment during development results in activation of an autophagy program in cerebral cortex. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1595-1602.	2.2	14
43	Apaf1 mediates apoptosis and mitochondrial damage induced by mutant human SOD1s typical of familial amyotrophic lateral sclerosis. Neurobiology of Disease, 2006, 21, 69-79.	2.1	25
44	Endoplasmic Reticulum Stress Induces Apoptosis by an Apoptosome-dependent but Caspase 12-independent Mechanism. Journal of Biological Chemistry, 2006, 281, 2693-2700.	1.6	108
45	Expanding roles of programmed cell death in mammalian neurodevelopment. Seminars in Cell and Developmental Biology, 2005, 16, 281-294.	2.3	57
46	Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death and Differentiation, 2004, 11, 1179-1191.	5.0	42
47	Physiological and pathological roles of Apaf1 and the apoptosome. Journal of Cellular and Molecular Medicine, 2003, 7, 21-34.	1.6	55
48	Apaf1 reduced expression levels generate a mutant phenotype in adult brain and skeleton. Cell Death and Differentiation, 2002, 9, 340-342.	5.0	5
49	Muscle mitochondria and oxidative metabolism as targets against cancer cachexia. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.5	2
50	Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1 ^{G93G} Mice Predates Disease Onset and is a Promising Therapeutic Target. SSRN Electronic Journal, 0, , .	0.4	0
51	Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Endocrine Abstracts, 0, , .	0.0	0