
MériÃ"m Anouti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6986773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anion effect on Li/Na/K hybrid electrolytes for Graphite//NCA (LiNi0.8Co0.15Al0.05O2) Li-ion batteries. Journal of Energy Chemistry, 2022, 64, 451-462.	7.1	8
2	Small dissymmetry, yet large effects on the transport properties of electrolytes based on imide salts: Consequences on performance in Li-ion batteries. Journal of Energy Chemistry, 2022, 65, 352-366.	7.1	13
3	Polarizable cesium cations for energy storage from electrolyte characterization to-EDLC application. Electrochimica Acta, 2022, 402, 139529.	2.6	7
4	Physical properties and compatibility with graphite and lithium metal anodes of non-flammable deep eutectic solvent as a safe electrolyte for high temperature Li-ion batteries. Electrochimica Acta, 2022, 408, 139944.	2.6	14
5	A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery. Journal of Energy Chemistry, 2021, 57, 238-246.	7.1	11
6	Poly-anthraquinone sulfide isomers as electrode materials for extended operating temperature organic batteries. Materials Advances, 2021, 2, 376-383.	2.6	5
7	Low-Concentrated Lithium Hexafluorophosphate Ternary-based Electrolyte for a Reliable and Safe NMC/Graphite Lithium-Ion Battery. Journal of Physical Chemistry Letters, 2021, 12, 1911-1917.	2.1	24
8	Protic ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application. Journal of Energy Chemistry, 2021, 53, 197-207.	7.1	40
9	Safe and efficient phosphonium ionic liquid based electrolyte for high-potential LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathodes for Li-ion batteries. Electrochimica Acta, 2021, 371, 137841.	2.6	10
10	Amide-based deep eutectic solvents containing LiFSI and NaFSI salts as superionic electrolytes for supercapacitor applications. Journal of Chemical Physics, 2021, 154, 164708.	1.2	23
11	Role of FTFSI Anion Asymmetry on Physical Properties of AFTFSI (A=Li, Na and K) Based Electrolytes and Consequences on Supercapacitor Application. ChemPhysChem, 2021, 22, 1863-1879.	1.0	2
12	Phosphonium ionic liquid-based electrolyte for high voltage Li-ion batteries: Effect of ionic liquid ratio. Journal of Applied Electrochemistry, 2021, 51, 1651-1664.	1.5	9
13	"Less is More′′: Ultra Low LiPF ₆ Concentrated Electrolyte for Efficient Liâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1708-1719.	2.4	9
14	Salt and Solvent effect on physicochemical properties and species organisation of Lithium fluorosulfonyl imide (FSI and TFSI) based electrolytes for Li-ion battery: Consequence on cyclability of LiNi0.8Co0.15Al0.05 (NCA) cathode. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 88-101.	2.7	4
15	Effect of fluorinated additives or co-solvent on performances of graphite//LiMn2O4 cells cycled at high potential. Journal of Energy Chemistry, 2021, 52, 332-342.	7.1	15
16	Comparative Study of Physical Properties and CO ₂ Solubility of Ammonium and Sulfonium Ionic Liquids in Mixture with Glutaronitrile. Journal of Chemical & Engineering Data, 2021, 66, 427-436.	1.0	2
17	Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. Journal of Energy Chemistry, 2020, 40, 31-38.	7.1	69
18	How do organic polysulphides improve the performance of Li-S batteries?. Electrochimica Acta, 2020, 330, 135253.	2.6	7

Mérièm Anouti

#	Article	IF	CITATIONS
19	Role of the electrolyte in gas formation during the cycling of a Gr//NMC battery as a function of temperature: Solvent, salt, and ionic liquid effect Electrochimica Acta, 2020, 362, 137214.	2.6	15
20	Influence of hydrophilic/hydrophobic protic ionic liquids (PILs) on the poly(vinylidene fluoride) (PVDF-ionic liquid) membrane properties. Journal of Materials Science, 2020, 55, 16697-16717.	1.7	13
21	Could K + â€Based Electrolytes Be the Reliable Environmentalâ€Friendly Alternative to Li + in Gr//LMO Battery We Searched for?. Energy Technology, 2020, 8, 2000342.	1.8	2
22	A new solvent mixture for use of LiTDI as electrolyte salt in Li-ion batteries. Electrochimica Acta, 2019, 305, 534-546.	2.6	10
23	Ionic association analysis of LiTDI, LiFSI and LiPF ₆ in EC/DMC for better Li-ion battery performances. RSC Advances, 2019, 9, 4599-4608.	1.7	58
24	Comparative Study of Alkaliâ€Cationâ€Based (Li ⁺ , Na ⁺ , K ⁺) Electrolytes in Acetonitrile and Alkylcarbonates. ChemPhysChem, 2019, 20, 581-594.	1.0	43
25	Approaches to Electrolyte Solvent Selection for Polyâ€Anthraquinone Sulfide Organic Electrode Material. ChemSusChem, 2018, 11, 965-974.	3.6	37
26	High-Voltage Lithium-ion Capacitors Based on Glutaronitrile Electrolytes. , 2018, , .		0
27	Effect of lithium salt concentration on the capacity retention of Lithium rich NMC cathodes. Electrochimica Acta, 2017, 223, 31-38.	2.6	15
28	Effect of low water content in protic ionic liquid on ions electrosorption in porous carbon: application to electrochemical capacitors. Physical Chemistry Chemical Physics, 2017, 19, 11173-11186.	1.3	25
29	Gas Evolution in Activated arbonâ€Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte. ChemPhysChem, 2017, 18, 2364-2373.	1.0	27
30	Catholyte Formulations for High-Energy Li–S Batteries. Journal of Physical Chemistry Letters, 2017, 8, 5907-5914.	2.1	14
31	Synthesis and Thermophysical Properties of Etherâ€Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications. ChemPhysChem, 2016, 17, 3992-4002.	1.0	30
32	Physicochemical and electrochemical properties of a new series of protic ionic liquids with N-chloroalkyl functionalized cations. RSC Advances, 2016, 6, 55144-55158.	1.7	17
33	Eutectic mixture of Protic Ionic Liquids as an Electrolyte for Activated Carbon-Based Supercapacitors. Electrochimica Acta, 2015, 155, 164-173.	2.6	55
34	Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. Journal of Power Sources, 2015, 296, 413-425.	4.0	109
35	Role of propane sultone as an additive to improve the performance of a lithium-rich cathode material at a high potential. RSC Advances, 2015, 5, 42088-42094.	1.7	46
36	LiTDI as electrolyte salt for Li-ion batteries: transport properties in EC/DMC. Electrochimica Acta, 2015, 180, 778-787.	2.6	48

MéRIèM ANOUTI

#	Article	IF	CITATIONS
37	Room-Temperature Molten Salts: Protic Ionic Liquids and Deep Eutectic Solvents as Media for Electrochemical Application. , 2015, , 217-252.		11
38	Physical Properties of a New Deep Eutectic Solvent Based on a Sulfonium Ionic Liquid as a Suitable Electrolyte for Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2015, 119, 970-979.	1.5	46
39	Comparative Study of Two Protic Ionic Liquids as Electrolyte for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2014, 161, A228-A238.	1.3	39
40	Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources, 2014, 263, 130-140.	4.0	44
41	Viscosity and Carbon Dioxide Solubility for LiPF ₆ , LiTFSI, and LiFAP in Alkyl Carbonates: Lithium Salt Nature and Concentration Effect. Journal of Physical Chemistry B, 2014, 118, 3973-3980.	1.2	47
42	Impact of Solid Electrolyte Interphase lithium salts on cycling ability of Li-ion battery: Beneficial effect of glymes additives. Journal of Power Sources, 2014, 248, 969-977.	4.0	26
43	Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 1-11.	2.3	15
44	Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application. RSC Advances, 2014, 4, 45647-45652.	1.7	30
45	Deep Eutectic Solvents Based on <i>N</i> -Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2014, 118, 4033-4042.	1.5	83
46	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2014, 79, 49-60.	1.0	17
47	Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte. Journal of Applied Electrochemistry, 2013, 43, 375-385.	1.5	14
48	Tunable gold nanoparticles shape and size in reductive and structuring media containing protic ionic liquids. Ionics, 2013, 19, 1783-1790.	1.2	12
49	Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1907-A1915.	1.3	34
50	An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components. Electrochimica Acta, 2013, 108, 226-231.	2.6	69
51	Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochimica Acta, 2013, 108, 361-368.	2.6	49
52	A Comparative Study on the Thermophysical Properties for Two Bis[(trifluoromethyl)sulfonyl]imide-Based Ionic Liquids Containing the Trimethyl-Sulfonium or the Trimethyl-Ammonium Cation in Molecular Solvents. Journal of Physical Chemistry B, 2013, 117, 1389-1402.	1.2	42
53	An investigation about the use of mixtures of sulfonium-based ionic liquids and propylene carbonate as electrolytes for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 12669.	5.2	47
54	Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 20054.	1.3	141

#	Article	IF	CITATIONS
55	Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements. Electrochimica Acta, 2013, 114, 95-104.	2.6	47
56	Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2013, 61, 32-44.	1.0	28
57	Comparative Performances of Birnessite and Cryptomelane MnO ₂ as Electrode Material in Neutral Aqueous Lithium Salt for Supercapacitor Application. Journal of Physical Chemistry C, 2013, 117, 7408-7422.	1.5	88
58	A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Physical Chemistry Chemical Physics, 2013, 15, 6539.	1.3	70
59	Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochemistry Communications, 2013, 31, 39-41.	2.3	164
60	Comparative Study on Performances of Trimethyl-Sulfonium and Trimethyl-Ammonium Based Ionic Liquids in Molecular Solvents as Electrolyte for Electrochemical Double Layer Capacitors. Journal of Physical Chemistry C, 2013, 117, 10315-10325.	1.5	47
61	Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta, 2013, 102, 120-126.	2.6	103
62	Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic) Tj ETQq0 0 0	rgB <u>T</u> /Over	lock 10 Tf 50
63	On the Use of Lithium Iron Phosphate in Combination with Protic Ionic Liquid-Based Electrolytes. Journal of the Electrochemical Society, 2013, 160, A559-A563.	1.3	35
64	Aprotic and Protic Ionic Liquids in Lithium Ion Batteries: A Comparative Study. ECS Meeting Abstracts, 2013, , .	0.0	2
65	Transport Properties Investigation of Aqueous Protic Ionic Liquid Solutions through Conductivity, Viscosity, and NMR Self-Diffusion Measurements. Journal of Physical Chemistry B, 2012, 116, 4228-4238.	1.2	70
66	Ester based electrolyte with lithium bis(trifluoromethane sulfonyl) imide salt for electrochemical storage devices: Physicochemical and electrochemical characterization. Electrochimica Acta, 2012, 86, 287-293.	2.6	18
67	Low pressure carbon dioxide solubility in pure electrolyte solvents for lithium-ion batteries as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2012, 50, 71-79.	1.0	44
68	Transport Properties of Tributylphosphonium Tetrafluoroborate Protic Ionic Liquid. Industrial & Engineering Chemistry Research, 2012, 51, 3170-3178.	1.8	18
69	Sulfonium Bis(trifluorosulfonimide) Plastic Crystal Ionic Liquid as an Electrolyte at Elevated Temperature for High-Energy Supercapacitors. Journal of Physical Chemistry C, 2012, 116, 9412-9418.	1.5	62
70	Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Physical Chemistry Chemical Physics, 2012, 14, 8199.	1.3	126
71	Interfacial Properties of LiTFSI and LiPF ₆ -Based Electrolytes in Binary and Ternary Mixtures of Alkylcarbonates on Graphite Electrodes and Celgard Separator. Industrial & Engineering Chemistry Research, 2012, 51, 5240-5245.	1.8	43
72	Thermophysical Properties of Ammonium-Based Bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids: Volumetric and Transport Properties. Journal of Chemical & Engineering Data, 2012, 57, 2227-2235.	1.0	71

MéRIèM ANOUTI

#	Article	IF	CITATIONS
73	Physicochemical characterization of vesicles systems formed in mixtures of protic ionic liquids and water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 190-198.	2.3	13
74	Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochimica Acta, 2012, 64, 110-117.	2.6	60
75	Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011, 196, 9743-9750.	4.0	250
76	Phosphonium-based protic ionic liquid as electrolyte for carbon-based supercapacitors. Electrochemistry Communications, 2011, 13, 1112-1115.	2.3	82
77	Solubilization of SEI lithium salts in alkylcarbonate solvents. Fluid Phase Equilibria, 2011, 305, 121-126.	1.4	47
78	Transport properties in two pyrrolidinium-based protic ionic liquids as determined by conductivity, viscosity and NMR self-diffusion measurements. Fluid Phase Equilibria, 2010, 299, 229-237.	1.4	32
79	Gamma ray degradation of electrolytes containing alkylcarbonate solvents and a lithium salt. Journal of Power Sources, 2010, 195, 614-620.	4.0	8
80	Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents. Journal of Chemical Thermodynamics, 2010, 42, 834-845.	1.0	135
81	Lithium fluoride dissolution equilibria in cyclic alkylcarbonates and water. Journal of Molecular Liquids, 2010, 153, 146-152.	2.3	18
82	Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochemistry Communications, 2010, 12, 414-417.	2.3	68
83	Transport properties of protic ionic liquids, pure and in aqueous solutions: Effects of the anion and cation structure. Fluid Phase Equilibria, 2010, 297, 13-22.	1.4	52
84	Physicochemical Characterization of Morpholinium Cation Based Protic Ionic Liquids Used As Electrolytes. Journal of Physical Chemistry B, 2010, 114, 1757-1766.	1.2	69
85	Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water. Fluid Phase Equilibria, 2009, 285, 62-68.	1.4	56
86	Ionic liquids based on 1-aza-bicyclo[2,2,2]octane (Quinuclidine) salts: synthesis and physicochemical properties. Journal of Applied Electrochemistry, 2009, 39, 2461-2467.	1.5	9
87	Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. Journal of Colloid and Interface Science, 2009, 340, 104-111.	5.0	108
88	Liquid densities, heat capacities, refractive index and excess quantities for {protic ionic liquids+water} binary system. Journal of Chemical Thermodynamics, 2009, 41, 799-808.	1.0	88
89	Alkylammonium-Based Protic Ionic Liquids Part I: Preparation and Physicochemical Characterization. Journal of Physical Chemistry B, 2008, 112, 9406-9411.	1.2	78
90	Synthesis and Characterization of New Pyrrolidinium Based Protic Ionic Liquids. Good and Superionic Liquids. Journal of Physical Chemistry B, 2008, 112, 13335-13343.	1.2	148

MéRIèM ANOUTI

#	Article	IF	CITATIONS
91	Alkylammonium-Based Protic Ionic Liquids. II. Ionic Transport and Heat-Transfer Properties: Fragility and Ionicity Rule. Journal of Physical Chemistry B, 2008, 112, 9412-9416.	1.2	52
92	Stabilization of sulfenyl(poly)selenide ions in N,N-dimethylacetamide. New Journal of Chemistry, 2002, 26, 1433-1439.	1.4	5
93	Characterization of organic polyselenide ions in N,N-dimethylacetamide. New Journal of Chemistry, 2001, 25, 741-746.	1.4	10
94	Nucleophilic Substitution of Alkyl Halides by Electrogenerated Polysulfide Ions in N,N-dimethylacetamide Acta Chemica Scandinavica, 1999, 53, 513-520.	0.7	10
95	Nucleophilic substitution of S-phenyl thiol esters by electrogenerated polysulfide ions in N,N-dimethylacetamide. Journal of the Chemical Society Perkin Transactions II, 1998, , 607-610.	0.9	2
96	Reactivity of electrogenerated polysulfide ions towards acyl thioanhydrides and anhydrides in N,N-dimethylacetamide. New Journal of Chemistry, 1998, 22, 53-56.	1.4	1
97	Spectroelectrochemical study of the nucleophilic substitution of diacyl disulfides by 2-nitrophenyl thiolate ions in <i>N</i> , <i>N</i> -dimethylacetamide. Canadian Journal of Chemistry, 1998, 76, 1867-1874.	0.6	2
98	Nucleophilic substitution of acyl chlorides by electrogenerated polysulfide ions in N,N-dimethylacetamide. Journal of the Chemical Society Perkin Transactions II, 1997, , 1759-1764.	0.9	9
99	Formation of acyldisulfide ions from the reaction of sulfur with thiocarboxylate ions, and reactivity towards acyl chlorides in N,N-dimethylacetamide. Journal of the Chemical Society Perkin Transactions II, 1997, , 473-478.	0.9	9
100	Formation and scission of the sulfur–sulfur bond: a new approach to reactions between sulfur/polysulfide ions and thiolate ions/disulfides in N,N-dimethylacetamide. Journal of the Chemical Society Perkin Transactions II, 1996, , 1993-1999.	0.9	16
101	Displacement of aromatic nitro groups by anionic sulfur nucleophiles: reactivity of aryl disulfide and thiolate ions towards dinitrobenzenes in N,N-dimethylacetamide. Journal of the Chemical Society	0.9	10