
Roxane J Itier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/698642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N170 or N1? Spatiotemporal Differences between Object and Face Processing Using ERPs. Cerebral Cortex, 2004, 14, 132-142.	2.9	561
2	Neural bases of eye and gaze processing: The core of social cognition. Neuroscience and Biobehavioral Reviews, 2009, 33, 843-863.	6.1	474
3	Inversion and Contrast Polarity Reversal Affect both Encoding and Recognition Processes of Unfamiliar Faces: A Repetition Study Using ERPs. NeuroImage, 2002, 15, 353-372.	4.2	470
4	Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development. PLoS Computational Biology, 2008, 4, e1000106.	3.2	348
5	Source analysis of the N170 to faces and objects. NeuroReport, 2004, 15, 1261-1265.	1.2	314
6	Face, eye and object early processing: What is the face specificity?. NeuroImage, 2006, 29, 667-676.	4.2	251
7	The Faces of Development: A Review of Early Face Processing over Childhood. Journal of Cognitive Neuroscience, 2004, 16, 1426-1442.	2.3	250
8	Early Face Processing Specificity: It's in the Eyes!. Journal of Cognitive Neuroscience, 2007, 19, 1815-1826.	2.3	225
9	Effects of repetition learning on upright, inverted and contrast-reversed face processing using ERPs. Neurolmage, 2004, 21, 1518-1532.	4.2	198
10	Face Recognition Memory and Configural Processing: A Developmental ERP Study using Upright, Inverted, and Contrast-Reversed Faces. Journal of Cognitive Neuroscience, 2004, 16, 487-502.	2.3	145
11	Inversion and contrast-reversal effects on face processing assessed by MEG. Brain Research, 2006, 1115, 108-120.	2.2	101
12	Direction of gaze effects on early face processing: eyes-only versus full faces. Cognitive Brain Research, 2001, 10, 333-340.	3.0	89
13	Eyes always attract attention but gaze orienting is task-dependent: Evidence from eye movement monitoring. Neuropsychologia, 2007, 45, 1019-1028.	1.6	86
14	Effects of repetition and configural changes on the development of face recognition processes. Developmental Science, 2004, 7, 469-487.	2.4	79
15	Controlling interstimulus perceptual variance does not abolish N170 face sensitivity. Nature Neuroscience, 2007, 10, 801-802.	14.8	77
16	Early sensitivity for eyes within faces: A new neuronal account of holistic and featural processing. NeuroImage, 2014, 97, 81-94.	4.2	66
17	Species sensitivity of early face and eye processing. NeuroImage, 2011, 54, 705-713.	4.2	63
18	Effects of task demands on the early neural processing of fearful and happy facial expressions. Brain Research, 2017, 1663, 38-50.	2.2	62

ROXANE J ITIER

#	Article	IF	CITATIONS
19	Explicit versus implicit gaze processing assessed by ERPs. Brain Research, 2007, 1177, 79-89.	2.2	54
20	Fearful, surprised, happy, and angry facial expressions modulate gaze-oriented attention: Behavioral and ERP evidence. Social Neuroscience, 2013, 8, 583-600.	1.3	51
21	Neural processing of fearful and happy facial expressions during emotion-relevant and emotion-irrelevant tasks: A fixation-to-feature approach. Biological Psychology, 2016, 119, 122-140.	2.2	49
22	The role of eyes in early face processing: A rapid adaptation study of the inversion effect. British Journal of Psychology, 2011, 102, 783-798.	2.3	47
23	ls it in the eyes? Dissociating the role of emotion and perceptual features of emotionally expressive faces in modulating orienting to eye gaze. Visual Cognition, 2011, 19, 483-510.	1.6	47
24	Long-term working memory deficits after concussion: Electrophysiological evidence. Brain Injury, 2013, 27, 1244-1255.	1.2	47
25	Face inversion and contrast-reversal effects across development: in contrast to the expertise theory. Developmental Science, 2004, 7, 246-260.	2.4	46
26	Autistic traits influence gaze-oriented attention to happy but not fearful faces. Social Neuroscience, 2015, 10, 70-88.	1.3	41
27	Attention orienting by gaze and facial expressions across development Emotion, 2013, 13, 397-408.	1.8	37
28	Combined effects of inversion and feature removal on N170 responses elicited by faces and car fronts. Brain and Cognition, 2013, 81, 321-328.	1.8	34
29	Spatiotemporal analysis of event-related potentials to upright, inverted, and contrast-reversed faces: Effects on encoding and recognition. Psychophysiology, 2004, 41, 643-653.	2.4	33
30	Searching for a perceived gaze direction using eye tracking. Journal of Vision, 2011, 11, 19-19.	0.3	31
31	Attention Capture by Direct Gaze is Robust to Context and Task Demands. Journal of Nonverbal Behavior, 2012, 36, 123-134.	1.0	30
32	Emotional modulation of attention orienting by gaze varies with dynamic cue sequence. Visual Cognition, 2015, 23, 720-735.	1.6	30
33	Fixation to features and neural processing of facial expressions in a gender discrimination task. Brain and Cognition, 2015, 99, 97-111.	1.8	30
34	Individual differences in the emotional modulation of gaze-cuing. Cognition and Emotion, 2019, 33, 768-800.	2.0	27
35	Facial expression discrimination varies with presentation time but not with fixation on features: A backward masking study using eye-tracking. Cognition and Emotion, 2014, 28, 115-131.	2.0	25
36	One versus two eyes makes a difference! Early face perception is modulated by featural fixation and feature context. Cortex, 2018, 109, 35-49.	2.4	24

ROXANE J ITIER

#	Article	IF	CITATIONS
37	Perceived Gaze Direction Differentially Affects Discrimination of Facial Emotion, Attention, and Gender – An ERP Study. Frontiers in Neuroscience, 2019, 13, 517.	2.8	24
38	Is the rapid adaptation paradigm too rapid? Implications for face and object processing. NeuroImage, 2012, 61, 812-822.	4.2	23
39	Is it about me? Time-course of self-relevance and valence effects on the perception of neutral faces with direct and averted gaze. Biological Psychology, 2018, 135, 47-64.	2.2	23
40	Joint Modulation of Facial Expression Processing by Contextual Congruency and Task Demands. Brain Sciences, 2019, 9, 116.	2.3	21
41	Both fearful and happy expressions interact with gaze direction by 200â€ms SOA to speed attention orienting. Visual Cognition, 2018, 26, 231-252.	1.6	19
42	The early processing of fearful and happy facial expressions is independent of task demands – Support from mass univariate analyses. Brain Research, 2021, 1765, 147505.	2.2	17
43	Effects of peripheral eccentricity and head orientation on gaze discrimination. Visual Cognition, 2014, 22, 1216-1232.	1.6	14
44	Feeling through another's eyes: Perceived gaze direction impacts ERP and behavioural measures of positive and negative affective empathy. NeuroImage, 2021, 226, 117605.	4.2	14
45	Increased Early Sensitivity to Eyes in Mouthless Faces: In Support of the LIFTED Model of Early Face Processing. Brain Topography, 2018, 31, 972-984.	1.8	13
46	Emotion, Gender and Gaze Discrimination Tasks do not Differentially Impact the Neural Processing of Angry or Happy Facial Expressions—a Mass Univariate ERP Analysis. Brain Topography, 2021, 34, 813-833.	1.8	13
47	The Gaze Cueing Effect and Its Enhancement by Facial Expressions Are Impacted by Task Demands: Direct Comparison of Target Localization and Discrimination Tasks. Frontiers in Psychology, 2021, 12, 618606.	2.1	11
48	Spontaneous eye-movements in neutral and emotional gaze-cuing: An eye-tracking investigation. Heliyon, 2019, 5, e01583.	3.2	10
49	Are you as important as me? Self-other discrimination within trait-adjective processing. Brain and Cognition, 2020, 142, 105569.	1.8	8
50	l can see it in your eyes: Perceived gaze direction impacts ERP and behavioural measures of affective theory of mind. Cortex, 2021, 143, 205-222.	2.4	8
51	Asymmetry in Gaze Direction Discrimination Between the Upper and Lower Visual Fields. Perception, 2017, 46, 941-955.	1.2	7
52	Eye gaze and head orientation modulate the inhibition of return for faces. Attention, Perception, and Psychophysics, 2015, 77, 2589-2600.	1.3	6
53	The Prominence of Self-referential Processing across ERP and Memory Consolidation in Children. Developmental Neuropsychology, 2021, 46, 598-615.	1.4	6
54	From eye to face: The impact of face outline, feature number, and feature saliency on the early neural response to faces. Brain Research, 2019, 1722, 146343.	2.2	5

ROXANE J ITIER

#	Article	IF	CITATIONS
55	Meaningful faces: Self-relevance of semantic context in an initial social encounter improves later face recognition. Psychonomic Bulletin and Review, 2021, 28, 283-291.	2.8	4
56	Orienting of covert attention by neutral and emotional gaze cues appears to be unaffected by mild to moderate amblyopia. Journal of Vision, 2021, 21, 5.	0.3	2
57	Preserved eye sensitivity of the N170 ERP component across face size. Journal of Vision, 2017, 17, 1029.	0.3	0
58	The Impact of Viewing Time to Internal Facial Features on Face Recognition Performance Following Implicit and Explicit Encoding. Journal of Vision, 2018, 18, 167.	0.3	0