Sukhleen Bindra Narang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985507/publications.pdf

Version: 2024-02-01

66 papers 1,016 citations

430874 18 h-index 30 g-index

66 all docs

66
docs citations

66 times ranked 694 citing authors

#	Article	IF	CITATIONS
1	Cobalt substituted nickel ferrites via Pechini's sol–gel citrate route: X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials, 2018, 466, 430-445.	2.3	109
2	Structural, magnetic and microwave absorption behavior of Co-Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. Journal of Magnetism and Magnetic Materials, 2017, 422, 304-314.	2.3	64
3	Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe12O19/NiFe2O4 nanocomposites. Journal of Alloys and Compounds, 2017, 725, 1175-1181.	5.5	56
4	Microwave characterization of Co–Ti substituted barium hexagonal ferrites in X- band. Journal of Magnetism and Magnetic Materials, 2016, 405, 17-21.	2.3	48
5	Composition dependent magnetic and microwave properties of exchange-coupled hard/soft nanocomposite ferrite. Journal of Alloys and Compounds, 2020, 815, 152391.	5.5	46
6	Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Materials Letters, 2019, 244, 186-191.	2.6	44
7	Comparative Dielectric Analysis of Co-Zr Doped M-Type Barium Hexaferrites BaCo _x Zr _x Fe _(12-2x) O ₁₉ Prepared by Different Wet Chemical Routes. Integrated Ferroelectrics, 2015, 167, 98-106.	0.7	42
8	Structural, dielectric and magnetic properties of BaFe $12\hat{a}^{2}$ Al x O 19 hexaferrite thick films. Journal of Magnetism and Magnetic Materials, 2017, 441, 465-474.	2.3	39
9	Effect of thickness on microwave absorptive behavior of La-Na doped Co-Zr barium hexaferrites in 18.0–26.5 GHz band. Journal of Magnetism and Magnetic Materials, 2017, 423, 441-446.	2.3	38
10	Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x $Fe(12\hat{a}^2x)O19$ Ferrites. Journal of Electronic Materials, 2017, 46, 718-728.	2.2	36
11	Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers. Journal of Magnetism and Magnetic Materials, 2017, 441, 475-481.	2.3	33
12	Dielectric properties of lanthanum substituted barium titanate microwave ceramics. Materials Letters, 2006, 60, 3179-3182.	2.6	29
13	Single-layer & double-layer microwave absorbers based on Co–Ti substituted barium hexaferrites for application in X and Ku-band. Journal of Materials Research, 2016, 31, 3682-3693.	2.6	24
14	Origin of absorption peaks in reflection loss spectrum in Ku-frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor. Journal of Magnetism and Magnetic Materials, 2017, 426, 202-205.	2.3	24
15	Sol-gel route approach and improvisation in physico-chemical, structural, magnetic and electrical properties of BaCo/2Zn/2Zr Fe(12â^2x)O19 ferrites. Journal of Magnetism and Magnetic Materials, 2018, 447, 32-41.	2.3	24
16	Electromagnetic Characterization of Co-Ti-Doped Ba-M Ferrite-Based Frequency-Tunable Microwave Absorber in 12.4–40 GHz. Journal of Superconductivity and Novel Magnetism, 2017, 30, 511-520.	1.8	22
17	Effect of Cu-Co-Zr Doping on the Properties of Strontium Hexaferrites Synthesized by Sol-Gel Auto-combustion Method. Journal of Superconductivity and Novel Magnetism, 2017, 30, 635-645.	1.8	20
18	Tunable M-type nano barium hexaferrite material by Zn ²⁺ /Zr ⁴⁺ co-doping. Materials Research Express, 2019, 6, 116111.	1.6	20

#	Article	IF	CITATIONS
19	Schottky–Richardson, Poole–Frenkel, and Space Charge Limited Current Mechanisms in Mâ€Type Sr(MnTi) _x Fe _(12â€2x) O ₁₉ Ferrite. Journal of the American Ceramic Society, 2016, 99, 3639-3644.	3.8	16
20	Low fire M-phase lithium based dielectric ceramics for microwave applications: A review (I). Ferroelectrics, 2016, 502, 49-56.	0.6	16
21	Microwave Absorption Properties of Cobalt-Zirconium Doped Strontium Hexaferrites in Ku-Frequency Band. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3465-3470.	1.8	16
22	Absorption Characterization of Mn-Zr-Substituted La-Sr Hexaferrite Using Open-Circuit and Short-Circuit Approaches in 8.2–18ÂGHz Frequency Range. Journal of Electronic Materials, 2018, 47, 820-827.	2.2	16
23	Frequency and temperature dependence of dielectric and electric properties of Ba _{2-x} Sm _{4+2x/3} Ti ₈ O ₂₄ with structural analysis. Materials Science-Poland, 2015, 33, 268-277.	1.0	15
24	Structural and dielectric properties of co-substituted M-type barium hexaferrite. Journal of Materials Science: Materials in Electronics, 2016, 27, 10157-10162.	2.2	14
25	Dielectric and impedance studies of (Pb1â^'xCax)(Fe0.5Nb0.5)O3 dielectric ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 1077-1086.	2.2	14
26	Investigation of Microwave Absorptive Behavior of La-Na Substituted M-Type Co-Zr Barium Hexaferrites in X-Band. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2881-2886.	1.8	13
27	Structural, dielectric and magnetic properties of (Pb1â^'Ca)(Fe0.5Nb0.5)O3 solid solution ceramics. Journal of Magnetism and Magnetic Materials, 2016, 407, 195-200.	2.3	12
28	Tuning of microwave absorptive behavior of double substituted barium hexaferrites with change in thickness in 26.5–40.0ÂGHz band. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	12
29	Modulation of electromagnetic and absorption properties in $18\hat{a}$ e"26.5ÂGHz frequency range of strontium hexaferrites with doping of cobaltâe"zirconium. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
30	Effect of temperature on dielectric and electrical properties of Co–Zr doped barium hexaferrites prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 2016, 27, 11220-11230.	2.2	10
31	Dielectric and microwave reflection properties of M-phase LNT (Li-Nb-Ti-O) solid solutions in X-band frequency range. Journal of Alloys and Compounds, 2019, 784, 668-675.	5. 5	10
32	Structural, magnetic, dielectric, microwave absorption, and optical characterization of $\$ {ext{Ni}}_{0.1} {ext{Co}}_{0.9} left({ext{MnZr}} ight)_{x} {ext{Fe}}_{2 - 2x} {ext{O}}_{4}/{ext{Ba}}_{y} {ext{Sr}}_{1 - y} {ext{Fe}}_{12} {ext{O}}_{19}\$\$ nanocomposites. Journal of Materials Science: Materials in Electronics, 2020, 31, 599-609.	2.2	10
33	Influence of the pore shape and dimension on the enhancement of thermoelectric performance of graphene nanoribbons. Journal of Materials Research, 2017, 32, 1149-1159.	2.6	9
34	Frequency and Temperature Dependence of Dielectric and Electrical Properties of Sn-Doped Lead Calcium Iron Niobate. Journal of Electronic Materials, 2016, 45, 959-969.	2.2	8
35	Optimization of Performance Parameters of Doped Ferrite-Based Microwave Absorbers: Their Structural, Tunable Reflection Loss, Bandwidth, and Input Impedance Characteristics. IEEE Transactions on Magnetics, 2021, 57, 1-19.	2.1	8
36	Complex permittivity, permeability and microwave absorbing properties of Co–Ti substituted strontium hexaferrite. Materials Science-Poland, 2016, 34, 19-24.	1.0	7

#	Article	IF	CITATIONS
37	Dielectric and optical study of the M-phase LNT (Li-Nb-Ti-O) solid solutions. Materials Research Bulletin, 2017, 88, 200-205.	5.2	7
38	Effect of Substitution of Samarium and Lanthanum on Dielectric and Electrical Properties of Barium Titanate. Ferroelectrics, 2015, 486, 74-85.	0.6	6
39	Synthesis and characterization of Ba6â^3xSm8+2xTi18O54 microwave dielectric ceramics. Ceramics International, 2007, 33, 249-253.	4.8	5
40	Microwave dielectric properties of pure and Zr ⁴⁺ doped lead calcium iron niobate substrates for microwave devices and antenna applications. Microwave and Optical Technology Letters, 2015, 57, 2152-2155.	1.4	5
41	Structural, dielectric and electrical analysis of Ba2â^'xLa4â \in %+â \in %2x/3Ti8O24ceramics system with frequency and temperature. Microwave and Optical Technology Letters, 2016, 58, 1679-1686.	1.4	5
42	Energy harvesting using piezoelectric materials. Integrated Ferroelectrics, 2016, 176, 268-274.	0.7	5
43	Effect of precursors on dielectric properties of Co-Zr doped strontium hexaferrites in 20ÂHz – 120ÂMHz frequency range. Ferroelectrics, 2016, 505, 67-73.	0.6	5
44	X-Band Microwave Reflection Properties of Samarium/Bismuth-Substituted Barium Lanthanum Titanate Ceramics. Journal of Electronic Materials, 2017, 46, 1770-1776.	2.2	5
45	Comparison of Ku (12.4–18 GHz) and K (18–26.5 GHz) Band Microwave Absorption Characterization of Co-Zr Co-substituted Ni-Zn Ferrites. Journal of Electronic Materials, 2021, 50, 5338-5347.	2.2	5
46	Modeling and Simulation of Efficient March Algorithm for Memory Testing. Communications in Computer and Information Science, 2010, , 96-107.	0.5	5
47	Influence of Zr substitution on structural, dielectric and magnetic behavior of lead calcium iron niobate. Journal of Materials Science: Materials in Electronics, 2016, 27, 738-743.	2.2	4
48	Structural and dielectric properties of Li 1 + x Ta 1â^'x Ti x O 3 M-phase solid solutions. Journal of Materials Science: Materials in Electronics, 2017, 28, 9688-9696.	2.2	4
49	Area Overhead and Power Analysis of March Algorithms for Memory BIST. Procedia Engineering, 2012, 30, 930-936.	1.2	3
50	Dielectric properties of Sn-substituted lead calcium iron niobate. Journal of Materials Science: Materials in Electronics, 2016, 27, 3653-3657.	2.2	3
51	X-Band Microwave Absorption in Nd³âº-Substituted Mg–Cd Spinel Ferrites Synthesized Under Microwave Sintering. IEEE Transactions on Magnetics, 2020, 56, 1-7.	2.1	3
52	Studies on Exchange-Coupled Magnetodielectric Ceramics for Microwave Absorption in K _u -Band. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	3
53	Influence of Sn substitution on microwave properties of lead calcium iron niobate. Journal of Materials Science: Materials in Electronics, 2017, 28, 100-104.	2.2	2
54	Tunable Thermoelectric Performance in Porous Armchair Graphene Nanoribbons as a Function of Strain, Pore Morphology and Temperature. Journal of Electronic Materials, 2018, 47, 6467-6475.	2.2	2

#	Article	IF	CITATIONS
55	Fabrication and microwave absorption properties of hexaferrite composites in Ku-band., 2015,,.		1
56	Managing Availability of web services in service oriented systems. , 2015, , .		1
57	Variation of Dielectric and Electrical Properties of Zr-Substituted Lead Calcium Iron Niobate with Temperature and Frequency. Journal of Electronic Materials, 2016, 45, 5048-5057.	2.2	1
58	Structural, dielectric, reflection and optical characteristics of the rare-earth (Yb, Er, Dy and Eu) substituted M-phase Li1+x-yNb1-x-3yTix+4yO3 solid solutions. Journal of Alloys and Compounds, 2020, 825, 153979.	5.5	1
59	Drain Current and Thermal Analysis of AlGaN/GaN High Electron Mobility Transistor for MMIC Design. Journal of Computational and Theoretical Nanoscience, 2012, 9, 763-768.	0.4	O
60	Analysis of Cellular Automata and Genetic Algorithm based Test Pattern Generators for Built In Self Test. Advances in Intelligent Systems and Computing, 2013, , 429-439.	0.6	0
61	Thermoelectric and electrical properties of Ba0.5Sr0.5Co x Ru x Fe($12\hat{a}^2x$)O19 ferrite*. European Physical Journal B, 2016, 89, 1.	1.5	O
62	To investigate the relation between pore size and twist angle in enhanced thermoelectric efficient porous armchair graphene nanoribbons. Materials Research Express, 2018, 5, 055023.	1.6	O
63	Strain dependence of the thermoelectric performance of porous armchair silicene nanoribbons. Journal of Materials Research, 2019, 34, 3946-3953.	2.6	O
64	HEMT for RF Circuits. Advances in Computer and Electrical Engineering Book Series, 2015, , 399-418.	0.3	O
65	Design and Performance Analysis of High Electron Mobility Transistor Based Static Random Access Memory Cell for High Frequency Applications. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 627-632.	0.5	O
66	A Proactive Solution to Manage Web Service Unavailability in Service Oriented Software Systems. Lecture Notes in Computer Science, 2016, , 243-254.	1.3	0