Tamar Elias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985254/publications.pdf Version: 2024-02-01

TAMAD FLIAS

#	Article	IF	CITATIONS
1	The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science, 2019, 363, 367-374.	6.0	353
2	Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research, 2002, 107, ECV 3-1-ECV 3-15.	3.3	142
3	Implications for eruptive processes as indicated by sulfur dioxide emissions from KıÌ,,lauea Volcano, Hawaiâ€`i, 1979‑'1997. Journal of Volcanology and Geothermal Research, 2001, 108, 283-302.	0.8	93
4	Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bulletin of Volcanology, 2006, 68, 323-327.	1.1	82
5	Small Explosion From New Vent at Kilauea's Summit. Eos, 2008, 89, 203-203.	0.1	66
6	Volcanic air pollution over the Island of Hawai'i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai'i Island school children. Environment International, 2016, 92-93, 543-552.	4.8	56
7	Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o vent: Aerosol flux and SO2lifetime. Geophysical Research Letters, 2002, 29, 30-1-30-4.	1.5	55
8	Magma storage, transport and degassing during the 2008–10 summit eruption at Kīlauea Volcano, Hawaiâ€ĩi. Geochimica Et Cosmochimica Acta, 2013, 123, 284-301.	1.6	49
9	The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nature Communications, 2020, 11, 5646.	5.8	49
10	Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight. Bulletin of Volcanology, 2006, 68, 313-322.	1.1	45
11	Observing and Forecasting Vog Dispersion from Kīlauea Volcano, Hawaii. Bulletin of the American Meteorological Society, 2015, 96, 1667-1686.	1.7	34
12	Volcanic air pollution and human health: recent advances and future directions. Bulletin of Volcanology, 2022, 84, 1.	1.1	31
13	Influence of eruptive style on volcanic gas emission chemistry and temperature. Nature Geoscience, 2018, 11, 678-681.	5.4	30
14	Measuring SO2 Emission Rates at Kīlauea Volcano, Hawaii, Using an Array of Upward-Looking UV Spectrometers, 2014–2017. Frontiers in Earth Science, 2018, 6, .	0.8	29
15	Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS measurements. Bulletin of Volcanology, 2020, 82, 1.	1.1	29
16	Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai'i. Communications Earth & Environment, 2021, 2, .	2.6	25
17	The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kīlauea, Hawaiʻi: melt concentrations, magma storage depths, and magma recycling. Bulletin of Volcanology, 2021, 83, 1.	1.1	25
18	Spatial and Temporal Variations in SO2 and PM2.5 Levels Around Kīlauea Volcano, Hawai'i During 2007–2018. Frontiers in Earth Science, 2020, 8, .	0.8	21

#	Article	IF	CITATIONS
19	Rapid metal pollutant deposition from the volcanic plume of Kīlauea, Hawai'i. Communications Earth & Environment, 2021, 2, .	2.6	15
20	Is volcanic air pollution associated with decreased heart-rate variability?. Heart Asia, 2010, 2, 36-41.	1.1	9
21	Two Ensemble Approaches for Forecasting Sulfur Dioxide Concentrations from Kīlauea Volcano. Weather and Forecasting, 2020, 35, 1923-1937.	0.5	8