
Ronald E Van Kesteren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined cellomics and proteomics analysis reveals shared neuronal morphology and molecular pathway phenotypes for multiple schizophrenia risk genes. Molecular Psychiatry, 2021, 26, 784-799.	4.1	22
2	Longitudinal Assessment of Working Memory Performance in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease Using an Automated Figure-8-Maze. Frontiers in Behavioral Neuroscience, 2021, 15, 655449.	1.0	3
3	Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer's disease. Molecular Psychiatry, 2020, 25, 3380-3398.	4.1	120
4	Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta. IScience, 2020, 23, 101271.	1.9	21
5	Hyperexcitable PV interneurons render hippocampal microcircuitry vulnerable to amyloid beta. Alzheimer's and Dementia, 2020, 16, e040283.	0.4	0
6	Interneuron hyperexcitability as both causal factor and risk factor in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040877.	0.4	3
7	AAV mediated gene therapy as local treatment modality directed against amyloid beta oligomers in the brain using a high affinity, high specificity antibody. Alzheimer's and Dementia, 2020, 16, e040920.	0.4	0
8	Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Molecular Systems Biology, 2020, 16, e9156.	3.2	22
9	A Combined Cellomics and Proteomics Approach to Uncover Neuronal Pathways to Psychiatric Disorder. Neuromethods, 2019, , 199-215.	0.2	0
10	Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9361-9379.	1.7	26
11	Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS ONE, 2017, 12, e0178533.	1.1	28
12	Dynamics of the mouse brain cortical synaptic proteome during postnatal brain development. Scientific Reports, 2016, 6, 35456.	1.6	79
13	Individual and Familial Susceptibility to MPTP in a Common Marmoset Model for Parkinson's Disease. Neurodegenerative Diseases, 2016, 16, 293-303.	0.8	9
14	Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo. PLoS ONE, 2015, 10, e0127163.	1.1	2
15	Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease. PLoS ONE, 2015, 10, e0128651.	1.1	114
16	Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels. Journal of Cell Biology, 2015, 211, 569-586.	2.3	28
17	Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2. Molecular and Cellular Proteomics, 2015, 14, 2177-2193.	2.5	9
18	Hippocampal Extracellular Matrix Levels and Stochasticity in Synaptic Protein Expression Increase with Age and Are Associated with Age-dependent Cognitive Decline. Molecular and Cellular Proteomics, 2014, 13, 2975-2985.	2.5	52

Ronald E Van Kesteren

#	Article	IF	CITATIONS
19	Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 76.	2.4	69
20	A Multilevel Screening Strategy Defines a Molecular Fingerprint of Proregenerative Olfactory Ensheathing Cells and Identifies SCARB2, a Protein That Improves Regenerative Sprouting of Injured Sensory Spinal Axons. Journal of Neuroscience, 2013, 33, 11116-11135.	1.7	32
21	Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling. PLoS ONE, 2013, 8, e63862.	1.1	185
22	FADS2 Genetic Variance in Combination with Fatty Acid Intake Might Alter Composition of the Fatty Acids in Brain. PLoS ONE, 2013, 8, e68000.	1.1	15
23	TRIM3 Regulates the Motility of the Kinesin Motor Protein KIF21B. PLoS ONE, 2013, 8, e75603.	1.1	33
24	High Content Screening in Neurodegenerative Diseases. Journal of Visualized Experiments, 2012, , e3452.	0.2	5
25	Identification of context-specific gene regulatory networks with <tt>GEMULA</tt> —gene expression modeling using LAsso. Bioinformatics, 2012, 28, 214-221.	1.8	35
26	Synaptic Proteome Changes in a DNA Repair Deficient <i>Ercc1</i> Mouse Model of Accelerated Aging. Journal of Proteome Research, 2012, 11, 1855-1867.	1.8	31
27	Molecular target discovery for neural repair in the functional genomics era. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 595-616.	1.0	9
28	A Gene Network Perspective on Axonal Regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 46.	1.4	56
29	Genome-wide gene expression and promoter binding analysis identifies NFIL3 as a repressor of C/EBP target genes in neuronal outgrowth. Molecular and Cellular Neurosciences, 2011, 46, 460-468.	1.0	44
30	Defective Clial Maturation in Vanishing White Matter Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 69-82.	0.9	111
31	LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data. Nucleic Acids Research, 2011, 39, 5313-5327.	6.5	19
32	Caltubin, a Novel Molluscan Tubulin-Interacting Protein, Promotes Axonal Growth and Attenuates Axonal Degeneration of Rodent Neurons. Journal of Neuroscience, 2011, 31, 15231-15244.	1.7	14
33	NFIL3 and cAMP Response Element-Binding Protein Form a Transcriptional Feedforward Loop that Controls Neuronal Regeneration-Associated Gene Expression. Journal of Neuroscience, 2009, 29, 15542-15550.	1.7	68
34	Postsynaptic expression of an epidermal growth factor receptor regulates cholinergic synapse formation between identified molluscan neurons. European Journal of Neuroscience, 2008, 27, 2043-2056.	1.2	14
35	Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. European Journal of Neuroscience, 2007, 25, 3629-3637.	1.2	117
36	Local Synthesis of Actin-Binding Protein Â-Thymosin Regulates Neurite Outgrowth. Journal of Neuroscience, 2006, 26, 152-157.	1.7	75

#	Article	IF	CITATIONS
37	Differential GABAA receptor clustering determines GABA synapse plasticity in rat oxytocin neurons around parturition and the onset of lactation. Molecular and Cellular Neurosciences, 2005, 28, 128-140.	1.0	33
38	Characterization of a novel molluskan tyrosine kinase receptor that inhibits neurite regeneration. Journal of Neurobiology, 2004, 60, 127-136.	3.7	5
39	The Role of Neurotransmitters in Neurite Outgrowth and Synapse Formation. Reviews in the Neurosciences, 2003, 14, 217-31.	1.4	71
40	Co-evolution of Ligand-Receptor Pairs in the Vasopressin/Oxytocin Superfamily of Bioactive Peptides. Journal of Biological Chemistry, 1996, 271, 3619-3626.	1.6	104