
Giuseppe Cirillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6985117/publications.pdf Version: 2024-02-01

CHISEDDE CIDILLO

#	Article	IF	CITATIONS
1	Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. Materials, 2022, 15, 1648.	1.3	9
2	Smart Lipid–Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2386.	1.8	10
3	Encapsulation of Alpha-Lipoic Acid in Functional Hybrid Liposomes: Promising Tool for the Reduction of Cisplatin-Induced Ototoxicity. Pharmaceuticals, 2022, 15, 394.	1.7	7
4	GO-SWCNT Buckypapers as an Enhanced Technology for Water Decontamination from Lead. Molecules, 2022, 27, 4044.	1.7	5
5	Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics, 2021, 13, 304.	2.0	28
6	Doxorubicin-Loaded Gold Nanoarchitectures as a Therapeutic Strategy against Diffuse Intrinsic Pontine Glioma. Cancers, 2021, 13, 1278.	1.7	11
7	Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications. Molecules, 2021, 26, 1355.	1.7	14
8	Combining Dextran Conjugates with Stimuli-Responsive and Folate-Targeting Activity: A New Class of Multifunctional Nanoparticles for Cancer Therapy. Nanomaterials, 2021, 11, 1108.	1.9	11
9	Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem, 2021, 16, 2315-2329.	1.6	43
10	Dextran-Curcumin Nanosystems Inhibit Cell Growth and Migration Regulating the Epithelial to Mesenchymal Transition in Prostate Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 7013.	1.8	10
11	Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics, 2021, 13, 1038.	2.0	14
12	Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. Journal of Carbon Research, 2021, 7, 3.	1.4	10
13	Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules, 2021, 26, 7001.	1.7	5
14	Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110537.	2.5	26
15	Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy. Pharmaceuticals, 2020, 13, 2.	1.7	33
16	Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research, 2020, 80, 4129-4144.	0.4	179
17	The "Materials Chemistry―Section of Molecules: A Multidisciplinary Environment for Materials-Based Researches. Molecules, 2020, 25, 6035.	1.7	0
18	Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics, 2020, 12, 1183.	2.0	19

#	Article	IF	CITATIONS
19	Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules, 2020, 25, 2102.	1.7	13
20	Functional Albumin Nanoformulations to Fight Adrenocortical Carcinoma: a Redox-Responsive Approach. Pharmaceutical Research, 2020, 37, 55.	1.7	4
21	Synthesis of Dextran–Phenoxodiol and Evaluation of Its Physical Stability and Biological Activity. Frontiers in Bioengineering and Biotechnology, 2019, 7, 183.	2.0	8
22	Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. Materials, 2019, 12, 2889.	1.3	53
23	Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics, 2019, 11, 486.	2.0	69
24	When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Medicinal Chemistry, 2019, 11, 2205-2231.	1.1	8
25	Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals, 2019, 12, 76.	1.7	30
26	Combining antioxidant hydrogels with self-assembled microparticles for multifunctional wound dressings. Journal of Materials Chemistry B, 2019, 7, 4361-4370.	2.9	16
27	Chitosan–Quercetin Bioconjugate as Multiâ€Functional Component of Antioxidants and Dualâ€Responsive Hydrogel Networks. Macromolecular Materials and Engineering, 2019, 304, 1800728.	1.7	20
28	Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.	2.0	33
29	Abstract 3224: Copper homeostasis: A new player in anti-tumor immune response. , 2019, , .		0
30	Facile synthesis of pH-responsive polymersomes based on lipidized PEG for intracellular co-delivery of curcumin and methotrexate. Colloids and Surfaces B: Biointerfaces, 2018, 167, 568-576.	2.5	16
31	Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 176-185.	2.0	24
32	Harnessing copper in cancer to enhance anti-tumor immune response. Annals of Oncology, 2018, 29, x35.	0.6	2
33	In vivo [64Cu]CuCl2 PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis. Theranostics, 2018, 8, 5645-5659.	4.6	18
34	Antioxidant Polymers for Food Packaging. , 2018, , 213-238.		3
35	Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin immobilization. International Journal of Pharmaceutics, 2018, 546, 50-60.	2.6	33
36	A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 1-10.	2.0	35

#	Article	IF	CITATIONS
37	Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Delivery, 2017, 24, 162-180.	2.5	48
38	Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. European Polymer Journal, 2017, 90, 1-12.	2.6	44
39	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	5.7	87
40	Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. International Journal of Pharmaceutics, 2017, 517, 168-174.	2.6	41
41	Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Scientific Reports, 2017, 7, 7638.	1.6	26
42	pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 324-332.	2.0	46
43	Hydrogels: Multi-Responsive Biomedical Devices. , 2017, , 699-722.		Ο
44	Polyphenol Conjugates and Human Health: A Perspective Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 326-337.	5.4	95
45	Dual Stimuli Responsive Gelatinâ€CNT Hybrid Films as a Versatile Tool for the Delivery of Anionic Drugs. Macromolecular Materials and Engineering, 2016, 301, 1537-1547.	1.7	6
46	Functional hydrogels with a multicatalytic activity for bioremediation: Singleâ€step preparation and characterization. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
47	Polyphenol Conjugates by Immobilized Laccase: The Green Synthesis of Dextran atechin. Macromolecular Chemistry and Physics, 2016, 217, 1488-1492.	1.1	29
48	Enhancing the therapeutic effects of polyphenols with macromolecules. Polymer Chemistry, 2016, 7, 1529-1544.	1.9	120
49	Cotton gauze-hydrogel composites: Valuable tools for electrically modulated drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 442-450.	1.8	7
50	Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth. Oncotarget, 2016, 7, 47479-47493.	0.8	40
51	Carbon Nanohybrids as Electro-Responsive Drug Delivery Systems. Mini-Reviews in Medicinal Chemistry, 2016, 16, 658-667.	1.1	12
52	Abstract 1340: Dextran-Catechin conjugate: An anticancer nano-modified natural compound targeting copper metabolism in neuroblastoma. , 2016, , .		0
53	Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels. Pharmaceutics, 2015, 7, 413-437.	2.0	28
54	On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances, 2015, 5, 44902-44911.	1.7	31

#	Article	IF	CITATIONS
55	Tailoring Flavonoids' Antioxidant Properties Through Covalent Immobilization Into Dual Stimuli Responsive Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 587-596.	1.8	4
56	Functional Gelatin-Carbon Nanotubes Nanohybrids With Enhanced Antibacterial Activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 439-447.	1.8	17
57	Graphene Oxide - Gelatin Nanohybrids as Functional Tools for Enhanced Carboplatin Activity in Neuroblastoma Cells. Pharmaceutical Research, 2015, 32, 2132-2143.	1.7	20
58	Coated biodegradable casein nanospheres: a valuable tool for oral drug delivery. Drug Development and Industrial Pharmacy, 2015, 41, 2006-2017.	0.9	6
59	Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. European Polymer Journal, 2015, 67, 304-313.	2.6	11
60	Flavonoid-based pH-responsive hydrogels as carrier of unstable drugs in oxidative conditions. Pharmaceutical Development and Technology, 2015, 20, 288-296.	1.1	6
61	Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids. International Journal of Cancer, 2015, 137, 2492-2503.	2.3	29
62	Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Materials Science and Engineering C, 2015, 48, 499-510.	3.8	42
63	Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chemistry, 2015, 175, 143-150.	4.2	45
64	Antioxidative Effectiveness of Environment Friendly Functional Biopolymers for Food Applications. , 2014, , 65-74.		1
65	Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review. BioMed Research International, 2014, 2014, 1-17.	0.9	123
66	Synthesis, characterization and antimicrobial activity of conjugates based on fluoroquinolon-type antibiotics and gelatin. Journal of Materials Science: Materials in Medicine, 2014, 25, 67-77.	1.7	7
67	Magnetic catechin–dextran conjugate as targeted therapeutic for pancreatic tumour cells. Journal of Drug Targeting, 2014, 22, 408-415.	2.1	37
68	Tubeless biochip for chemical stimulation of cells in closed-bioreactors: anti-cancer activity of the catechin–dextran conjugate. RSC Advances, 2014, 4, 35017-35026.	1.7	3
69	Functionalized carbon nanotubes as transporters for antisense oligodeoxynucleotides. Journal of Materials Chemistry B, 2014, 2, 7000-7008.	2.9	9
70	Enzyme immobilization on smart polymers: Catalysis on demand. Reactive and Functional Polymers, 2014, 83, 62-69.	2.0	70
71	Novel functional cisplatin carrier based on carbon nanotubes–quercetin nanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Advances, 2014, 4, 31378.	1.7	20
72	Recent Development in the Synthesis of Eco-Friendly Polymeric Antioxidants. Current Organic Chemistry, 2014, 18, 2912-2927.	0.9	15

#	Article	IF	CITATIONS
73	Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). Pharmaceutical Development and Technology, 2013, 18, 1058-1065.	1.1	10
74	Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drugâ€delivery systems. Journal of Applied Polymer Science, 2013, 130, 829-834.	1.3	21
75	Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. International Journal of Pharmaceutics, 2013, 448, 115-122.	2.6	80
76	Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release. Pharmaceutical Development and Technology, 2013, 18, 1026-1034.	1.1	9
77	Size-dependent nanographene oxide as a platform for efficient carboplatin release. Journal of Materials Chemistry B, 2013, 1, 6107.	2.9	24
78	Stabilization of oxidable vitamins by flavonoid-based hydrogels. Reactive and Functional Polymers, 2013, 73, 1030-1037.	2.0	9
79	Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system. Colloid and Polymer Science, 2013, 291, 699-708.	1.0	19
80	Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	46
81	Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. European Journal of Pharmaceutical Sciences, 2013, 49, 359-365.	1.9	42
82	Incorporation of carbon nanotubes into a gelatin–catechin conjugate: Innovative approach for the preparation of anticancer materials. International Journal of Pharmaceutics, 2013, 446, 176-182.	2.6	54
83	Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	73
84	Quercetin-Imprinted Nanospheres as Novel Drug Delivery Devices. Journal of Functional Biomaterials, 2012, 3, 269-282.	1.8	31
85	Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharmaceutical Development and Technology, 2012, 17, 466-476.	1.1	52
86	Dextran-Catechin Conjugate: A Potential Treatment Against the Pancreatic Ductal Adenocarcinoma. Pharmaceutical Research, 2012, 29, 2601-2614.	1.7	78
87	A new member of the oxygen-photosensitizers family: a water-soluble polymer binding a platinum complex. Dalton Transactions, 2012, 41, 10923.	1.6	6
88	Selective extraction and purification of gallic acid from actual site olive mill wastewaters by means of molecularly imprinted microparticles. Chemical Engineering Journal, 2012, 198-199, 529-535.	6.6	35
89	Ciprofloxacin-Collagen Conjugate in the Wound Healing Treatment. Journal of Functional Biomaterials, 2012, 3, 361-371.	1.8	17
90	Carbon Nanotubes â \in " Imprinted Polymers: Hybrid Materials for Analytical Applications. , 2012, , .		2

#	Article	IF	CITATIONS
91	Determination of Phospholipids in Food Samples. Food Reviews International, 2012, 28, 1-46.	4.3	41
92	Anticancer activity of a quercetin-based polymer towards HeLa cancer cells. Anticancer Research, 2012, 32, 2843-7.	0.5	32
93	Synthesis of Stimuli-Responsive Microgels for In Vitro Release of Diclofenac Diethyl Ammonium. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 823-844.	1.9	18
94	Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opinion on Drug Delivery, 2011, 8, 1379-1393.	2.4	130
95	A new method for the determination of biogenic amines in cheese by LC with evaporative light scattering detector. Talanta, 2011, 85, 363-369.	2.9	47
96	Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. Journal of Pharmacy and Pharmacology, 2011, 63, 179-188.	1.2	71
97	Poly(2-hydroxyethyl methacrylate)-quercetin Conjugate as Biomaterial in Ophthalmology: An "ab initio―Study. Journal of Functional Biomaterials, 2011, 2, 1-17.	1.8	16
98	Synthesis of hydrophilic microspheres with LCST close to body temperature for controlled dualâ€sensitive drug release. Polymers for Advanced Technologies, 2011, 22, 1705-1712.	1.6	17
99	Thermoâ€responsive albumin hydrogels with LCST near the physiological temperature. Journal of Applied Polymer Science, 2011, 121, 342-351.	1.3	11
100	Molecularly imprinted polymers for the selective extraction of glycyrrhizic acid from liquorice roots. Food Chemistry, 2011, 125, 1058-1063.	4.2	90
101	Antioxidant Activity of a Mediterranean Food Product: "Fig Syrup― Nutrients, 2011, 3, 317-329.	1.7	21
102	Negative Thermo-responsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech, 2010, 11, 652-662.	1.5	27
103	Iron (III) chelation and antioxidant properties of myo-inositol phosphorylated polymeric microspheresâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 597-601.	1.2	14
104	Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. Journal of Pharmacy and Pharmacology, 2010, 62, 577-582.	1.2	45
105	Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydrate Polymers, 2010, 79, 333-340.	5.1	123
106	Molecular imprinting polymerization by Fenton reaction. Colloid and Polymer Science, 2010, 288, 689-693.	1.0	12
107	Surface modifications of molecularly imprinted polymers for improved template recognition in water media. Journal of Polymer Research, 2010, 17, 355-362.	1.2	43
108	Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. Journal of Applied Polymer Science, 2010, 115, 784-789.	1.3	37

#	Article	IF	CITATIONS
109	Antioxidant and spectroscopic studies of crosslinked polymers synthesized by grafting polymerization of ferulic acid. Polymers for Advanced Technologies, 2010, 21, 774-779.	1.6	18
110	Biological Activity of a Gallic Acidâ^'Gelatin Conjugate. Biomacromolecules, 2010, 11, 3309-3315.	2.6	79
111	Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 48-55.	2.0	78
112	New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 2010, 21, 1425-1435.	2.8	379
113	Selective Determination of Melamine in Aqueous Medium by Molecularly Imprinted Solid Phase Extraction. Journal of Agricultural and Food Chemistry, 2010, 58, 11883-11887.	2.4	43
114	Gastro-intestinal sustained release of phytic acid by molecularly imprinted microparticles. Pharmaceutical Development and Technology, 2010, 15, 526-531.	1.1	13
115	Selective recognition of methotrexate by molecularly imprinted polymers. E-Polymers, 2009, 9, .	1.3	1
116	Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid and Polymer Science, 2009, 287, 779-787.	1.0	35
117	New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. European Polymer Journal, 2009, 45, 1634-1640.	2.6	115
118	Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. Journal of Drug Targeting, 2009, 17, 72-77.	2.1	85
119	Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules, 2009, 10, 1923-1930.	2.6	185
120	Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. Journal of Agricultural and Food Chemistry, 2009, 57, 5933-5938.	2.4	328
121	Removal of metal ions from aqueous solution by chelating polymeric microspheres bearing phytic acid derivatives. European Polymer Journal, 2008, 44, 1183-1190.	2.6	51
122	Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products. Food Chemistry, 2008, 106, 836-842.	4.2	91
123	Molecularly Imprinted Polymers for α-Tocopherol Delivery. Drug Delivery, 2008, 15, 253-258.	2.5	39
124	Synthesis of Methacrylicâ^'Ferulic Acid Copolymer with Antioxidant Properties by Single-Step Free Radical Polymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 10646-10650.	2.4	48
125	Polymer in Agriculture: a Review. American Journal of Agricultural and Biological Science, 2008, 3, 299-314.	0.9	224
126	Molecularly Imprinted Polymers for Selective Adsorption of Cholesterol from Aqueous Environment. E-Polymers, 2007, 7, .	1.3	1

8

#	Article	IF	CITATIONS
127	Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids. Molecules, 2007, 12, 805-814.	1.7	66
128	Molecularly imprinted solid phase extraction for the selective HPLC determination of α-tocopherol in bay leaves. Analytica Chimica Acta, 2007, 593, 164-170.	2.6	105
129	Synthesis and Antioxidant Efficiency of a New Copolymer Containing Phosphorylated Myo-Inositol. Macromolecular Bioscience, 2005, 5, 1049-1056.	2.1	14
130	Hydrogels: Multi-Responsive Biomedical Devices. , 0, , 3970-3993.		0