Yiqian Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984992/publications.pdf Version: 2024-02-01

ΥΙΟΙΑΝ ΜΑΝ

#	Article	IF	CITATIONS
1	An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE). Chemical Science, 2016, 7, 4485-4491.	7.4	174
2	Pd/Câ€Catalyzed Cyanation of Aryl Halides in Aqueous PEG. European Journal of Organic Chemistry, 2008, 2008, 3524-3528.	2.4	90
3	Structure-Based Discovery of Highly Selective Phosphodiesterase-9A Inhibitors and Implications for Inhibitor Design. Journal of Medicinal Chemistry, 2012, 55, 8549-8558.	6.4	58
4	Direct Arylation of Pyrroles via Indirect Electroreductive C–H Functionalization Using Perylene Bisimide as an Electron-Transfer Mediator. Organic Letters, 2016, 18, 544-547.	4.6	58
5	Discovery of a Phosphodiesterase 9A Inhibitor as a Potential Hypoglycemic Agent. Journal of Medicinal Chemistry, 2014, 57, 10304-10313.	6.4	53
6	Functionalised Chitosan as a Green, Recyclable, Supported Catalyst for the Copper-Catalysed Ullmann C-N Coupling Reaction in Water. Catalysis Communications, 2015, 60, 92-95.	3.3	53
7	Selective Angiotensin II AT2 Receptor Agonists:  Arylbenzylimidazole Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2006, 49, 7160-7168.	6.4	47
8	Pyrroleâ€2â€carbohydrazides as Ligands for Cuâ€Catalyzed Amination of Aryl Halides with Amines in Pure Water. European Journal of Organic Chemistry, 2010, 2010, 3219-3223.	2.4	46
9	Palladiumâ€Free Copper atalyzed Coupling Reaction of Aryl Iodides and Terminal Acetylenes in Water. Synthetic Communications, 2007, 37, 1355-1361.	2.1	44
10	Efficient Copperâ€Catalyzed Direct Amination of Aryl Halides Using Aqueous Ammonia in Water. European Journal of Organic Chemistry, 2010, 2010, 6149-6152.	2.4	43
11	Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene(thio) barbiturates as novel tyrosinase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 3279-3284.	3.0	43
12	A recyclable Cu-catalyzed C–N coupling reaction in water and its application to synthesis of imidazo[1,2-a]quinoxaline. Tetrahedron, 2013, 69, 8974-8977.	1.9	38
13	Polyethylene glycol (PEG-200)-promoted sustainable one-pot three-component synthesis of 3-indole derivatives in water. Applied Catalysis A: General, 2013, 454, 160-163.	4.3	33
14	Room-Temperature Cul-Catalyzed Amination of Aryl Iodides and Aryl Bromides. Journal of Organic Chemistry, 2017, 82, 5416-5423.	3.2	33
15	A Highly Versatile Catalytic System for <i>N</i> â€Arylation of Amines with Aryl Chlorides in Water. European Journal of Organic Chemistry, 2011, 2011, 4523-4527.	2.4	30
16	Biological and Structural Characterization of Trypanosoma cruzi Phosphodiesterase C and Implications for Design of Parasite Selective Inhibitors. Journal of Biological Chemistry, 2012, 287, 11788-11797.	3.4	30
17	An insight into the pharmacophores of phosphodiesterase-5 inhibitors from synthetic and crystal studies. Biochemical Pharmacology, 2008, 75, 1717-1728.	4.4	29
18	Enhancement of the excited-state intramolecular proton transfer process to produce all-powerful DSE molecules for bridging the gap between ACQ and AIE. Dyes and Pigments, 2019, 160, 839-847.	3.7	29

YIQIAN WAN

#	Article	IF	CITATIONS
19	Copper/oxalohydrazide/ketone catalyzed synthesis of primary arylamines via coupling of aryl halides with aqueous ammonia in water. Tetrahedron, 2011, 67, 5450-5454.	1.9	28
20	Amination of Aryl Halides by Using an Environmentally Benign, Recyclable Copper Catalyst. European Journal of Organic Chemistry, 2012, 2012, 4897-4901.	2.4	27
21	Efficient synthesis of indoles from 2-alkynylaniline derivatives in water using a recyclable copper catalyst system. Tetrahedron, 2015, 71, 451-456.	1.9	27
22	A Facile and Efficient Oxalyldihydrazide/Ketoneâ€Promoted Copperâ€Catalyzed Amination of Aryl Halides in Water. European Journal of Organic Chemistry, 2009, 2009, 635-642.	2.4	24
23	Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor. Molecular Pharmacology, 2015, 88, 836-845.	2.3	23
24	CuI/PPh ₃ /PEG–Water: An Efficient Catalytic System for Cross-Coupling Reaction of Aryl Iodides and Alkynes. Synthetic Communications, 2011, 41, 3123-3133.	2.1	21
25	Design, Synthesis and Evaluation of N13-Substituted Evodiamine Derivatives against Human Cancer Cell Lines. Molecules, 2013, 18, 15750-15768.	3.8	20
26	A simple and recyclable copper/DTPA catalyst system for amination of aryl halides with aqueous ammonia in water. Catalysis Communications, 2014, 45, 100-103.	3.3	18
27	Copperâ€Catalyzed Domino Reactions for the Synthesis of Phenothiazines. European Journal of Organic Chemistry, 2015, 2015, 4835-4839.	2.4	17
28	Sc(OTf) ₃ : A Highly Efficient and Renewable Catalyst for Michael Addition of Indoles to Nitroolefins in Water. Synthetic Communications, 2010, 40, 3259-3267.	2.1	15
29	N2,N2′-disubstituted oxalic acid bishydrazides: novel ligands for copper-catalyzed CN coupling reactions in water. Applied Organometallic Chemistry, 2011, 25, 341-347.	3.5	15
30	One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2,3-b]furan scaffold. Chinese Chemical Letters, 2021, 32, 445-448.	9.0	13
31	A Catalyst System, Copper/N-Methoxy-1H-pyrrole-2-carboxamide, for the Synthesis of Phenothiazines in Poly(ethylene glycol). Synthesis, 2014, 46, 3356-3364.	2.3	10
32	Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury. Oncotarget, 2017, 8, 58985-58999.	1.8	10
33	Whole-rainbow-color organic solid fluorophores from subtle modification of thiazolo[5,4-b]thieno[3,2-e]pyridines (TTPs). Journal of Materials Chemistry C, 2017, 5, 3456-3460.	5.5	9
34	An Effective Heterogeneous Copper Catalyst System for C–N Coupling and Its Application in the Preparation of 2-Methyl-4-methoxydiphenylamine (MMDPA). Synthesis, 2018, 50, 3911-3920.	2.3	9
35	GRGDS-functionalized chitosan nanoparticles as a potential intravenous hemostat for traumatic hemorrhage control in an animal model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2531-2540.	3.3	8
36	SeO 2 â€Mediated Oneâ€Pot Synthesis of 3 yanofurans from 3â€Oxoâ€3â€arylpropanenitriles and Substitu Acetaldehydes. European Journal of Organic Chemistry, 2017, 2017, 2317-2321.	ited	4

YIQIAN WAN

#	Article	IF	CITATIONS
37	Copper-Catalysed One-Pot Synthesis of 2,3,4,9-Tetrahydro-1H-Xanthen-1-Ones from 2-Halobenzylbromides and Cyclic-1,3-Diketones in Water. Catalysis Letters, 2015, 145, 1612-1620.	2.6	3
38	A Synergetic Organoselenium Catalytic System for Constructing 4â€Chromanone Derivatives via a Tandem Process under Visible Light Radiation. ChemistrySelect, 2021, 6, 5610-5613.	1.5	3
39	A Novel Way to Tricyclic Heteroaromatics; Thiazolo[5,4-b]thieno[3,2-e]pyridine Derivatives. Synthesis, 2014, 46, 2317-2326.	2.3	2