Won-joon Shim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6984964/won-joon-shim-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,761 191 55 92 h-index g-index citations papers 6.58 11,865 6.3 195 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
191	What type of plastic do sea turtles in Korean waters mainly ingest? Quantity, shape, color, size, polymer composition, and original usage <i>Environmental Pollution</i> , 2022 , 118849	9.3	O
190	Levels and profiles of perfluorinated alkyl acids in liver tissues of birds with different habitat types and trophic levels from an urbanized coastal region of South Korea. <i>Science of the Total Environment</i> , 2022 , 806, 151263	10.2	Ο
189	Underwater hidden microplastic hotspots: Historical ocean dumping sites <i>Water Research</i> , 2022 , 216, 118254	12.5	O
188	A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques. <i>Marine Pollution Bulletin</i> , 2021 , 173, 113	1617	1
187	Prevalence of small high-density microplastics in the continental shelf and deep sea waters of East Asia. <i>Water Research</i> , 2021 , 200, 117238	12.5	8
186	Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. <i>Environmental Pollution</i> , 2021 , 270, 116217	9.3	42
185	Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels. <i>Environmental Pollution</i> , 2021 , 270, 116272	9.3	8
184	Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. <i>Environmental Pollution</i> , 2021 , 270, 116175	9.3	28
183	Can Zooplankton Be Entangled by Microfibers in the Marine Environment?: Laboratory Studies. <i>Water (Switzerland)</i> , 2020 , 12, 3302	3	O
182	The physical oceanography of the transport of floating marine debris. <i>Environmental Research Letters</i> , 2020 , 15, 023003	6.2	186
181	Spatial distribution of microplastic in the surface waters along the coast of Korea. <i>Marine Pollution Bulletin</i> , 2020 , 155, 110729	6.7	19
180	Rapid recovery of coastal environment and ecosystem to the Hebei Spirit oil spill® impact. <i>Environment International</i> , 2020 , 136, 105438	12.9	11
179	A close relationship between microplastic contamination and coastal area use pattern. <i>Water Research</i> , 2020 , 171, 115400	12.5	60
178	Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). <i>Marine Pollution Bulletin</i> , 2020 , 161, 111717	6.7	20
177	Rapid Production of Micro- and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. <i>Environmental Science & Exposed</i> 2020, 54, 11191-11200	10.3	50
176	Coastal Ecosystem Health Assessment in Korea: Busan Case Study. <i>Ocean Science Journal</i> , 2019 , 54, 165	j- 1.8 2	2
175	Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. <i>Water Research</i> , 2019 , 160, 228-237	12.5	165

(2017-2019)

174	Microplastic contamination of table salts from Taiwan, including a global review. <i>Scientific Reports</i> , 2019 , 9, 10145	4.9	47
173	An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. <i>Marine Pollution Bulletin</i> , 2019 , 146, 831-837	6.7	51
172	Multiple approaches to assessing the risk posed by anthropogenic plastic debris. <i>Marine Pollution Bulletin</i> , 2019 , 141, 188-193	6.7	3
171	Abundance and characteristics of microplastics in market bivalves from South Korea. <i>Environmental Pollution</i> , 2019 , 245, 1107-1116	9.3	156
170	Corrections to "Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type". <i>Environmental Science & Environmental Scienc</i>	- 1 832	17
169	eDNA-based bioassessment of coastal sediments impacted by an oil spill. <i>Environmental Pollution</i> , 2018 , 238, 739-748	9.3	32
168	Abundance, composition, and distribution of microplastics larger than 20 fh in sand beaches of South Korea. <i>Environmental Pollution</i> , 2018 , 238, 894-902	9.3	103
167	Characterization of endocrine disruption potentials of coastal sediments of Taean, Korea employing H295R and MVLN assays-Reconnaissance at 5years after Hebei Spirit oil spill. <i>Marine Pollution Bulletin</i> , 2018 , 127, 264-272	6.7	9
166	Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. <i>Marine Pollution Bulletin</i> , 2018 , 131, 365-369	6.7	41
165	Horizontal and Vertical Distribution of Microplastics in Korean Coastal Waters. <i>Environmental Science & Environmental Science</i>	10.3	123
164	Marine Microplastics: Abundance, Distribution, and Composition 2018, 1-26		19
163	Long-term changes in rocky intertidal macrobenthos during the five years after the Hebei Spirit oil spill, Taean, Korea. <i>Ocean Science Journal</i> , 2017 , 52, 103-112	1.1	3
162	Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	453
161	RNA seq- and DEG-based comparison of developmental toxicity in fish embryos of two species exposed to Iranian heavy crude oil. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2017 , 196, 1-10	3.2	5
160	Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. <i>Integrated Environmental Assessment and Management</i> , 2017 , 13, 494-499	2.5	96
159	Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products. <i>Science of the Total Environment</i> , 2017 , 579, 745-754	10.2	72
158	Imposex in Reishia clavigera as an Indicator to Assess Recovery of TBT Pollution After a Total Ban in South Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2017 , 73, 301-309	3.2	10
157	Searching for novel modes of toxic actions of oil spill using E.lcoli live cell array reporter system - A Hebei Spirit oil spill study. <i>Chemosphere</i> , 2017 , 169, 669-677	8.4	2

156	Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. <i>Environmental Pollution</i> , 2017 , 231, 785-794	9.3	86
155	Characteristics of meso-sized plastic marine debris on 20 beaches in Korea. <i>Marine Pollution Bulletin</i> , 2017 , 123, 92-96	6.7	27
154	Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1117-1125	4.3	28
153	Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater -field and laboratory experiments. <i>Chemosphere</i> , 2017 , 185, 798-805	8.4	40
152	Long-Term Monitoring of PAH Contamination in Sediment and Recovery After the Hebei Spirit Oil Spill. <i>Archives of Environmental Contamination and Toxicology</i> , 2017 , 73, 93-102	3.2	14
151	Reconnaissance of dioxin-like and estrogen-like toxicities in sediments of Taean, Korea-seven years after the Hebei Spirit oil spill. <i>Chemosphere</i> , 2017 , 168, 1203-1210	8.4	6
150	Identification methods in microplastic analysis: a review. <i>Analytical Methods</i> , 2017 , 9, 1384-1391	3.2	373
149	Identification and quantification of microplastics using Nile Red staining. <i>Marine Pollution Bulletin</i> , 2016 , 113, 469-476	6.7	220
148	Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 3281-93	4.4	15
147	Bioaccessibility of AhR-active PAHs in sediments contaminated by the Hebei Spirit oil spill: Application of Tenax extraction in effect-directed analysis. <i>Chemosphere</i> , 2016 , 144, 706-12	8.4	30
146	Assessment of Persistent Organic and Heavy Metal Contamination in Busan Coast: Application of Sediment Quality Index. <i>Ocean and Polar Research</i> , 2016 , 38, 171-184		7
145	Origins of suspended particulate matter based on sterol distribution in low salinity water mass observed in the offshore East China Sea. <i>Marine Pollution Bulletin</i> , 2016 , 108, 281-8	6.7	11
144	Styrofoam Debris as a Source of Hazardous Additives for Marine Organisms. <i>Environmental Science & Environmental & Environment</i>	10.3	119
143	Thyroid Hormone Disruption by Water-Accommodated Fractions of Crude Oil and Sediments Affected by the Hebei Spirit Oil Spill in Zebrafish and GH3 Cells. <i>Environmental Science & Echnology</i> , 2016 , 50, 5972-80	10.3	21
142	Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 279-87	3.2	136
141	Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues. <i>Chemosphere</i> , 2015 , 139, 23-9	8.4	27
140	Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry. Journal of Hazardous Materials, 2015, 296, 93-100	12.8	27
139	DNA damage caused by organic extracts of contaminated sediment, crude, and weathered oil and their fractions recovered up to 5 years after the 2007 Hebei Spirit oil spill off Korea. <i>Marine Pollution Bulletin</i> , 2015 , 95, 452-7	6.7	9

(2014-2015)

138	Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. <i>Marine Pollution Bulletin</i> , 2015 , 95, 484-90	6.7	38
137	A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. <i>Marine Pollution Bulletin</i> , 2015 , 93, 202-9	6.7	405
136	Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 269-78	3.2	94
135	Differential Toxicokinetics Determines the Sensitivity of Two Marine Embryonic Fish Exposed to Iranian Heavy Crude Oil. <i>Environmental Science & Embryonic Fish Exposed to Science & Embryonic Fish Exposed to Provide Oil Communication (No. 1988)</i>	10.3	43
134	Potential Threat of Microplastics to Zooplanktivores in the Surface Waters of the Southern Sea of Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 340-51	3.2	56
133	Microplastics in the Ocean. Archives of Environmental Contamination and Toxicology, 2015, 69, 265-8	3.2	92
132	Qualitative Analysis of Additives in Plastic Marine Debris and Its New Products. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 352-66	3.2	117
131	Distribution and Size Relationships of Plastic Marine Debris on Beaches in South Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 69, 288-98	3.2	79
130	A practical review on photooxidation of crude oil: laboratory lamp setup and factors affecting it. <i>Water Research</i> , 2015 , 68, 304-15	12.5	42
129	Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia. <i>Environmental Pollution</i> , 2015 , 196, 331-40	9.3	28
128	Enrichment of hexabromocyclododecanes in coastal sediments near aquaculture areas and a wastewater treatment plant in a semi-enclosed bay in South Korea. <i>Science of the Total Environment</i> , 2015 , 505, 290-8	10.2	58
127	Finding solutions for the styrofoam buoy debris problem through participatory workshops. <i>Marine Policy</i> , 2015 , 51, 182-189	3.5	23
126	Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column. <i>Ocean Science Journal</i> , 2015 , 50, 763-773	1.1	4
125	Marine neustonic microplastics around the southeastern coast of Korea. <i>Marine Pollution Bulletin</i> , 2015 , 96, 304-12	6.7	133
124	Stable isotope analysis of a newly established macrofaunal food web 1.5 years after the Hebei Spirit oil spill. <i>Marine Pollution Bulletin</i> , 2015 , 90, 167-80	6.7	7
123	Effect-directed analysis and mixture effects of AhR-active PAHs in crude oil and coastal sediments contaminated by the Hebei Spirit oil [spill. Environmental Pollution, 2015, 199, 110-8	9.3	39
122	Short-Term Variation of the Macrobenthic Fauna Structure on Rocky Shores after the Hebei Spirit Oil Spill, West Coast of Korea. <i>Journal of Coastal Research</i> , 2015 , 31, 177	0.6	7
121	Molecular cloning and expression analysis of two lipopolysaccharide-induced TNF-Ifactors (LITAFs) from rock bream, Oplegnathus fasciatus. <i>Fish and Shellfish Immunology</i> , 2014 , 36, 467-74	4.3	12

120	Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. <i>Science of the Total Environment</i> , 2014 , 470-471, 1463-70	10.2	30
119	Source- and region-specific distribution of polycyclic aromatic hydrocarbons in sediments from Jinhae Bay, Korea. <i>Science of the Total Environment</i> , 2014 , 470-471, 1485-93	10.2	34
118	Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. <i>Environmental Science & Environmental Science & Environm</i>	10.3	305
117	Naphthenic acids in coastal sediments after the Hebei Spirit oil spill: a potential indicator for oil contamination. <i>Environmental Science & Environmental Science & Environm</i>	10.3	34
116	Prediction of ecotoxicity of heavy crude oil: contribution of measured components. <i>Environmental Science & Environmental & En</i>	10.3	34
115	Combined effects of Iranian heavy crude oil and bacterial challenge (Streptococcus iniae) on biotransformation and innate immune responses in rockfish (Sebastes schlegeli). <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 93, 199-203	2.7	7
114	Sources of plastic marine debris on beaches of Korea: More from the ocean than the land. <i>Ocean Science Journal</i> , 2014 , 49, 151-162	1.1	59
113	Congener-specific accumulation and environmental risk assessment of polybrominated diphenyl ethers in diverse Korean sewage sludge types. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7480-8	5.1	9
112	Molecular cloning, characterisation and expression of the translationally controlled tumor protein gene in rock bream (Oplegnathus fasciatus). <i>Genes and Genomics</i> , 2014 , 36, 565-572	2.1	
111	Temporal changes in TBT pollution in water, sediment, and oyster from Jinhae Bay after the total ban in South Korea. <i>Marine Pollution Bulletin</i> , 2014 , 86, 547-554	6.7	30
110	Environmental and ecological effects and recoveries after five years of the Hebei Spirit oil spill, Taean, Korea. <i>Ocean and Coastal Management</i> , 2014 , 102, 522-532	3.9	34
109	Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. <i>Marine Pollution Bulletin</i> , 2014 , 78, 201-8	6.7	50
108	Fish biological effect monitoring of chemical stressors using a generalized linear model in South Sea, Korea. <i>Marine Pollution Bulletin</i> , 2014 , 78, 230-4	6.7	2
107	Estimation of lost tourism revenue in Geoje Island from the 2011 marine debris pollution event in South Korea. <i>Marine Pollution Bulletin</i> , 2014 , 81, 49-54	6.7	149
106	Biochemical responses of juvenile rockfish (Sebastes schlegeli) to low levels of dissolved oxygen in Gamak Bay. <i>Ocean Science Journal</i> , 2014 , 49, 241-247	1.1	2
105	Integrative assessment of sediment quality in terms of chemical contamination in Jinhae Bay, South Korea. <i>Ocean Science Journal</i> , 2014 , 49, 265-278	1.1	11
104	Assessment of pollution and ecological risk of heavy metals in the surface sediments of Ulsan Bay, Korea. <i>Ocean Science Journal</i> , 2014 , 49, 279-289	1.1	30
103	Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment. <i>Ocean Science Journal</i> , 2014 , 49, 329-341	1.1	36

102	Sorption capacity of plastic debris for hydrophobic organic chemicals. <i>Science of the Total Environment</i> , 2014 , 470-471, 1545-52	10.2	303
101	Hexabromocyclododecane in polystyrene based consumer products: an evidence of unregulated use. <i>Chemosphere</i> , 2014 , 110, 111-9	8.4	95
100	Determination of Petroleum Aromatic Hydrocarbons in Seawater Using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography/Mass Spectrometry. <i>Journal of the Korean Society for Marine Environment & Energy</i> , 2014 , 17, 27-35	0.4	2
99	Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. <i>Chemosphere</i> , 2013 , 92, 1161-8	8.4	43
98	Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea. <i>Ocean Science Journal</i> , 2013 , 48, 225-233	1.1	129
97	Effects of chemically enhanced water-accommodated fraction of Iranian heavy crude oil on periphytic microbial communities in microcosm experiment. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2013 , 90, 605-10	2.7	7
96	Expression of three novel cytochrome P450 (CYP) and antioxidative genes from the polychaete, Perinereis nuntia exposed to water accommodated fraction (WAF) of Iranian crude oil and benzo[a]pyrene. <i>Marine Environmental Research</i> , 2013 , 90, 75-84	3.3	30
95	Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. <i>Environmental Science & Environmental Science & Envi</i>	10.3	534
94	Geologically distinct crude oils cause a common cardiotoxicity syndrome in developing zebrafish. <i>Chemosphere</i> , 2013 , 91, 1146-55	8.4	86
93	Variations in sea surface temperatures based on alkenones in Korea Plateau sediments of the East Sea (Sea of Japan) over the last 300,000 years. <i>Journal of Asian Earth Sciences</i> , 2013 , 66, 140-149	2.8	6
92	Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2013 , 157, 172-82	3.2	17
91	Monitoring toxicity of polycyclic aromatic hydrocarbons in intertidal sediments for five years after the Hebei Spirit oil spill in Taean, Republic of Korea. <i>Marine Pollution Bulletin</i> , 2013 , 76, 241-9	6.7	34
90	The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS. <i>Journal of Hazardous Materials</i> , 2013 , 263 Pt 2, 404-11	12.8	45
89	Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. <i>Marine Pollution Bulletin</i> , 2013 , 77, 349-54	6.7	234
88	Isotopic dilution determination of emerging flame retardants in marine sediments by HPLC-APCI-MS/MS. <i>Analytical Methods</i> , 2013 , 5, 1771	3.2	14
87	Petroleum hydrocarbon contaminations in the intertidal seawater after the Hebei Spirit oil spilleffect of tidal cycle on the TPH concentrations and the chromatographic characterization of seawater extracts. <i>Water Research</i> , 2013 , 47, 758-68	12.5	51
86	Impacts of marine debris on wild animals in the coastal area of Korea. <i>Marine Pollution Bulletin</i> , 2013 , 66, 117-24	6.7	61
85	Mesocosm study on weathering characteristics of Iranian Heavy crude oil with and without dispersants. <i>Journal of Hazardous Materials</i> , 2013 , 248-249, 37-46	12.8	13

84	Acute toxic responses of the rockfish (Sebastes schlegeli) to Iranian heavy crude oil: feeding disrupts the biotransformation and innate immune systems. <i>Fish and Shellfish Immunology</i> , 2013 , 35, 357-65	4.3	13
83	Initial impacts of the Hebei Spirit oil spill on the sandy beach macrobenthic community west coast of Korea. <i>Marine Pollution Bulletin</i> , 2013 , 70, 189-96	6.7	29
82	The Honolulu Strategy and Its Implication to Marine Debris Management in Korea. <i>Journal of the Korean Society for Marine Environment & Energy</i> , 2013 , 16, 143-150	0.4	1
81	Chemical tracers, sterol biomarkers and satellite imagery in the study of a river plume ecosystem in the Yellow Sea. <i>Continental Shelf Research</i> , 2012 , 33, 29-36	2.4	19
80	Stronger impact of dispersant plus crude oil on natural plankton assemblages in short-term marine mesocosms. <i>Journal of Hazardous Materials</i> , 2012 , 217-218, 338-49	12.8	41
79	Two years after the Hebei Spirit oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments. <i>Environmental Science & Environmental Science & Environme</i>	14 ^{0.3}	74
78	AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: a comparison between Korea and China. <i>Environmental Pollution</i> , 2012 , 171, 216-25	9.3	41
77	Molecular characterization, expression, and functional analysis of two thioredoxins in the black rockfish (Sebastes schlegelii). <i>Fish and Shellfish Immunology</i> , 2012 , 32, 808-15	4.3	14
76	Spatial variability of biochemical responses in resident fish after the M/V Hebei Spirit Oil Spill (Taean, Korea). <i>Ocean Science Journal</i> , 2012 , 47, 209-214	1.1	28
75	Oil spill environmental forensics: the Hebei Spirit oil spill case. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 6431-7	10.3	93
74	Particle-size distribution of polycyclic aromatic hydrocarbons in urban road dust of Masan, Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2012 , 63, 189-98	3.2	17
73	Multiple in vitro bioassay approach in sediment toxicity evaluation: Masan Bay, Korea. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2012 , 89, 32-7	2.7	15
72	Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill. <i>Journal of Hazardous Materials</i> , 2011 , 197, 60-9	12.8	94
71	Biomarker responses in pelagic and benthic fish over 1 year following the Hebei Spirit oil spill (Taean, Korea). <i>Marine Pollution Bulletin</i> , 2011 , 62, 1859-66	6.7	70
70	Temporal and geographical trends in the genotoxic effects of marine sediments after accidental oil spill on the blood cells of striped beakperch (Oplegnathus fasciatus). <i>Marine Pollution Bulletin</i> , 2011 , 62, 2264-8	6.7	23
69	Polychlorinated biphenyls (PCBs) in a benthic ecosystem in Gwangyang Bay, South Korea. <i>Marine Pollution Bulletin</i> , 2011 , 62, 2863-8	6.7	13
68	Three decades of TBT contamination in sediments around a large scale shipyard. <i>Journal of Hazardous Materials</i> , 2011 , 192, 634-42	12.8	29
67	Status and trend of butyltin contamination in Masan Bay, Korea. <i>Toxicology and Environmental Health Sciences</i> , 2011 , 3, 46-53	1.9	10

(2009-2011)

66	Tracing origins of sewage and organic matter using dissolved sterols in Masan and Haengam Bay, Korea. <i>Ocean Science Journal</i> , 2011 , 46, 95-103	1.1	16
65	Genotoxicity and endocrine-disruption potentials of sediment near an oil spill site: two years after the Hebei Spirit oil spill. <i>Environmental Science & Echnology</i> , 2011 , 45, 7481-8	10.3	57
64	First characterisation of the populations and immune-related activities of hemocytes from two edible gastropod species, the disk abalone, Haliotis discus discus and the spiny top shell, Turbo cornutus. <i>Fish and Shellfish Immunology</i> , 2010 , 28, 87-97	4.3	61
63	Hard/soft heterometallic network complex of a macrocycle with endo/exocyclic coordination. <i>Inorganic Chemistry</i> , 2010 , 49, 10241-3	5.1	33
62	Occurrence and spatial distribution of organic contaminants in sediments from Chinhae Bay, Korea. <i>Toxicology and Environmental Health Sciences</i> , 2010 , 2, 119-124	1.9	3
61	Initial recolonization of benthic fauna in defaunated sediment contaminated with octylphenol: Field microcosm exposure study. <i>Toxicology and Environmental Health Sciences</i> , 2010 , 2, 132-140	1.9	2
60	Dispersion of organic contaminants from wastewater treatment outfall in Masan Bay, Korea. <i>Toxicology and Environmental Health Sciences</i> , 2010 , 2, 200-206	1.9	6
59	Effects of crude oil on marine microbial communities in short term outdoor microcosms. <i>Journal of Microbiology</i> , 2010 , 48, 594-600	3	33
58	Understanding the accumulation features of POPs in squid from the offshore waters of southeast Korea. <i>Fisheries Science</i> , 2010 , 76, 325-331	1.9	2
57	Nonylphenol in bivalves and sediments in the northeast coast of China. <i>Journal of Environmental Sciences</i> , 2010 , 22, 1735-40	6.4	19
56	Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. <i>Marine Pollution Bulletin</i> , 2010 , 60, 383-9	6.7	86
55	Temporal trend, spatial distribution, and terrestrial sources of PBDEs and PCBs in Masan Bay, Korea. <i>Marine Pollution Bulletin</i> , 2010 , 60, 1836-41	6.7	67
54	Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media. <i>Sensors</i> , 2009 , 9, 9582-602	3.8	15
53	Persistent organochlorine pollutants in Korean offshore waters: squid (Todarodes pacificus) as a biomonitor. <i>Marine Pollution Bulletin</i> , 2009 , 58, 1238-1244	6.7	11
52	Biomarkers in marbled flounder (Pleuronectes yokohamae) from contaminated and reference sites in South Korea. <i>Marine Pollution Bulletin</i> , 2009 , 58, 1754-9	6.7	4
51	Assessment of sediment contamination by persistent organic pollutants in Gyeonggi Bay, Korea. <i>Toxicology and Environmental Health Sciences</i> , 2009 , 1, 56-63	1.9	12
50	Biomonitoring background levels of PCBs and PBDEs in Seoul metropolitan atmosphere for possible health effects. <i>Toxicology and Environmental Health Sciences</i> , 2009 , 1, 109-116	1.9	4
49	Accumulation of tributyltin and triphenyltin compounds in laboratory exposure and their induction of imposex in rock shell (Thais clavigera). <i>Toxicology and Environmental Health Sciences</i> , 2009 , 1, 182-18	37 ^{1.9}	1

48	Biochemical changes in rockfish, Sebastes schlegeli, exposed to dispersed crude oil. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2009 , 150, 218-23	3.2	23
47	Survey on organochlorine pesticides, PCDD/Fs, dioxin-like PCBs and HCB in sediments from the Han river, Korea. <i>Chemosphere</i> , 2009 , 75, 580-587	8.4	57
46	PCDD/F, PBDE, and nonylphenol contamination in a semi-enclosed bay (Masan Bay, South Korea) and a Mediterranean lagoon (Thau, France). <i>Chemosphere</i> , 2009 , 77, 854-62	8.4	52
45	Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. <i>Geochemical Journal</i> , 2009 , 43, 1-13	0.9	31
44	Seasonal Variation of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) on Anmyeon Island. <i>Ocean and Polar Research</i> , 2009 , 31, 189-198		2
43	Field application of a method for measuring DNA damage in polychaete blood cells exposed to Masan Bay sediment extracts. <i>Marine Pollution Bulletin</i> , 2008 , 56, 354-8	6.7	2
42	Biomarker responses in caged rockfish (Sebastes schlegeli) from Masan Bay and Haegeumgang, South Korea. <i>Marine Pollution Bulletin</i> , 2008 , 57, 599-606	6.7	20
41	Distribution of persistent organic pollutants in bivalves from the northeast coast of China. <i>Marine Pollution Bulletin</i> , 2008 , 57, 775-81	6.7	24
40	Assessment of tributyltin contamination in a shipyard area using a mussel transplantation approach. <i>Marine Pollution Bulletin</i> , 2008 , 57, 883-8	6.7	21
39	Distribution characteristics of nonylphenolic chemicals in Masan Bay environments, Korea. <i>Chemosphere</i> , 2008 , 71, 1162-72	8.4	66
38	Persistent organochlorine residues in estuarine and marine sediments from Ha Long Bay, Hai Phong Bay, and Ba Lat Estuary, Vietnam. <i>Chemosphere</i> , 2008 , 72, 1193-202	8.4	63
37	Application of pressurized fluid extraction technique in the gas chromatography-mass spectrometry determination of sterols from marine sediment samples. <i>Journal of Chromatography A</i> , 2007 , 1160, 64-70	4.5	24
36	Improved cleanup technique for gas chromatographic-mass spectrometric determination of alkylphenols from biota extract. <i>Journal of Chromatography A</i> , 2007 , 1171, 15-21	4.5	21
35	Application of nonylphenol and coprostanol to identification of industrial and fecal pollution in Korea. <i>Marine Pollution Bulletin</i> , 2007 , 54, 101-7	6.7	10
34	Human Exposure to Dioxin-Like Compounds in Fish and Shellfish Consumed in South Korea. <i>Human and Ecological Risk Assessment (HERA)</i> , 2007 , 13, 223-235	4.9	20
33	Distribution and characteristics of PAHs in sediments from the marine environment of Korea. <i>Chemosphere</i> , 2007 , 68, 85-92	8.4	88
32	A congener-specific survey for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) contamination in Masan Bay, Korea. <i>Chemosphere</i> , 2007 , 68, 1613-22	8.4	24
31	Characterization of cholinesterases in marbled sole, Limanda yokohamae, and their inhibition in vitro by the fungicide iprobenfos. <i>Marine Environmental Research</i> , 2007 , 63, 471-8	3.3	18

30	Application of a Sediment Quality Index to the Masan Bay, Korea. <i>Ocean and Polar Research</i> , 2007 , 29, 367-378		2
29	Protein and gene expression of VTG in response to 4-nonylphenol in rockfish (Sebastes schlegeli). <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2006 , 143, 162-70	3.2	8
28	Nationwide monitoring of polychlorinated biphenyls and organochlorine pesticides in sediments from coastal environment of Korea. <i>Chemosphere</i> , 2006 , 64, 1479-88	8.4	96
27	Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus. <i>Marine Biotechnology</i> , 2006 , 8, 654-62	3.4	60
26	Comparative toxicities of organotin compounds on fertilization and development of sea urchin (Anthocidaris crassispina). <i>Bulletin of Environmental Contamination and Toxicology</i> , 2006 , 77, 755-62	2.7	7
25	Contamination Status and Characteristics of Persistent Organochlorine Pesticides in the Saemangeum Environment. <i>Ocean and Polar Research</i> , 2006 , 28, 317-329		8
24	Spatial and Temporal Distribution of Organophosphorus Pesticides in Seawater from Saemangeum Area. <i>Ocean and Polar Research</i> , 2006 , 28, 331-337		2
23	Congener-specific survey for polychlorinated biphenlys in sediments of industrialized bays in Korea: regional characteristics and pollution sources. <i>Environmental Science & Environmental Science & </i>	8 ^{10.3}	95
22	Accumulation of butyl- and phenyltin compounds in starfish and bivalves from the coastal environment of Korea. <i>Environmental Pollution</i> , 2005 , 133, 489-99	9.3	43
21	Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea. <i>Marine Pollution Bulletin</i> , 2005 , 50, 319-26	6.7	133
20	Seasonal and spatial distribution of nonylphenol and IBP in Saemangeum Bay, Korea. <i>Marine Pollution Bulletin</i> , 2005 , 51, 966-74	6.7	26
19	A preliminary report of persistent organochlorine pollutants in the Yellow Sea. <i>Marine Pollution Bulletin</i> , 2005 , 50, 217-22	6.7	19
18	A survey of polychlorinated dibenzo-p-dioxins and furans in Korean seafood-a congener-specific approach. <i>Marine Pollution Bulletin</i> , 2005 , 50, 1121-7	6.7	34
17	Molecular cloning of vitellogenin cDNA in rockfish (Sebastes schlegeli) and effects of 2,2月,4日,5Rhexachlorobiphenyl (PCB 153) on its gene expression. <i>Marine Pollution Bulletin</i> , 2005 , 51, 794-800	6.7	15
16	Assessment of butyl- and phenyltin pollution in the coastal environment of Korea using mussels and oysters. <i>Marine Pollution Bulletin</i> , 2005 , 51, 922-31	6.7	37
15	Levels of persistent organochlorine contaminants in fish from Korea and their potential health risk. <i>Archives of Environmental Contamination and Toxicology</i> , 2005 , 48, 358-66	3.2	55
14	PYE [2-(1-pyrenyl)ethyldimethylsilylated silica] Column HPLC and HR-GC-(micro) ECD in the Accurate Determination of Toxic Co-planar PCBs and Polybrominated Diphenyl Ethers (PBDEs). <i>Bulletin of the Korean Chemical Society</i> , 2005 , 26, 529-536	1.2	7
13	Seasonal flux of nonylphenol in Han River, Korea. <i>Chemosphere</i> , 2004 , 56, 1-6	8.4	63

12	Accumulation of tributyltin in olive flounder, Paralichthys olivaceus: its effect on hepatic cytochrome P450. <i>Archives of Environmental Contamination and Toxicology</i> , 2003 , 44, 390-7	3.2	14
11	Phytotoxic effects of antifouling compounds on nontarget plant species. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2003 , 71, 881-6	2.7	26
10	Horizontal and vertical distribution of PCBs and chlorinated pesticides in sediments from Masan Bay, Korea. <i>Marine Pollution Bulletin</i> , 2003 , 46, 244-53	6.7	155
9	Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. <i>Marine Pollution Bulletin</i> , 2002 , 45, 268-79	6.7	96
8	Accumulation of tributyltin in the blood of fish: Its application for monitoring in the marine environment. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1451-1455	3.8	13
7	Horizontal and vertical distribution of butyltin compounds in sediments from shipyards in Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 43, 277-83	3.2	35
6	Identification of PAHs Sources in Bivalves and Sediments 5 Years After the Sea Prince Oil Spill in Korea. <i>Environmental Forensics</i> , 2002 , 3, 357-366	1.6	3
5	Trace Organic Contaminants in Sediments from Deep-sea Basin near Dokdo, Korea. <i>Ocean and Polar Research</i> , 2002 , 24, 391-398		1
4	Imposex in the rock shell, Thais clavigera, as evidence of organotin contamination in the marine environment of Korea. <i>Marine Environmental Research</i> , 2000 , 49, 435-51	3.3	84
3	Horizontal distribution of butyltins in surface sediments from an enclosed bay system, Korea. <i>Environmental Pollution</i> , 1999 , 106, 351-7	9.3	57
2	Accumulation of tributyl- and triphenyltin compounds in Pacific oyster, Crassostrea gigas, from the Chinhae Bay System, Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 1998 , 35, 41-7	3.2	62
1	Microplastics and nanoplastics in the marine-atmosphere environment. <i>Nature Reviews Earth & Environment</i> ,	30.2	8