Mario R Capecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984794/publications.pdf

Version: 2024-02-01

109 papers 19,015 citations

56 h-index 29157 104 g-index

109 all docs

109 docs citations

109 times ranked 16574 citing authors

#	Article	IF	CITATIONS
1	The origin and evolution of gene targeting. Developmental Biology, 2022, 481, 179-187.	2.0	5
2	Defining the $\mbox{\sc i} \times \mbox{\sc Hoxb8}$ cell lineage during murine definitive hematopoiesis. Development (Cambridge), 2022, 149, .	2.5	3
3	ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. Journal of Clinical Investigation, 2021, 131, .	8.2	16
4	The clear cell sarcoma functional genomic landscape. Journal of Clinical Investigation, 2021, $131, \ldots$	8.2	15
5	Enhanced chromosome extraction from cells using a pinched flow microfluidic device. Biomedical Microdevices, 2020, 22, 25.	2.8	4
6	Lrig 1 expression prospectively identifies stem cells in the ventricular-subventricular zone that are neurogenic throughout adult life. Neural Development, 2020, 15 , 3 .	2.4	15
7	Site-Specific Recombination with Inverted Target Sites: A Cautionary Tale of Dicentric and Acentric Chromosomes. Genetics, 2020, 215, 923-930.	2.9	5
8	Size and shape based chromosome separation in the inertial focusing device. Biomicrofluidics, 2020, 14, 064109.	2.4	6
9	A Microglia Sublineage Protects from Sex-Linked Anxiety Symptoms and Obsessive Compulsion. Cell Reports, 2019, 29, 791-799.e3.	6.4	24
10	HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. IScience, 2019, 13, 43-54.	4.1	13
11	The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell, 2018, 33, 527-541.e8.	16.8	99
12	Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11071-E11080.	7.1	25
13	Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development (Cambridge), 2018, 145, .	2.5	99
14	<i>piggyBac</i> mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 722-727.	7.1	74
15	Genome-wide piggyBac transposon mediated screening reveals genes related to reprogramming. Protein and Cell, 2017, 8, 134-139.	11.0	0
16	Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy. Scientific Reports, 2017, 7, 44791.	3.3	33
17	Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Translational Medicine, 2017, 6, 340-351.	3.3	5
18	The Influential Role of BCL2 Family Members in Synovial Sarcomagenesis. Molecular Cancer Research, 2017, 15, 1733-1740.	3.4	10

#	Article	IF	CITATIONS
19	Mouse fitness measures reveal incomplete functional redundancy of Hox paralogous group 1 proteins. PLoS ONE, 2017, 12, e0174975.	2.5	2
20	Paracrine osteoprotegerin and \hat{l}^2 -catenin stabilization support synovial sarcomagenesis in periosteal cells. Journal of Clinical Investigation, 2017, 128, 207-218.	8.2	11
21	Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements. Open Biology, 2016, 6, 160241.	3.6	12
22	Efficient generation of selectionâ€geneâ€free rat knockout models by homologous recombination in ES cells. FEBS Letters, 2016, 590, 3416-3424.	2.8	7
23	Modeling synovial sarcoma metastasis in the mouse: Pl3′-lipid signaling and inflammation. Journal of Experimental Medicine, 2016, 213, 2989-3005.	8.5	29
24	Cardiac Bmi1 + cells contribute to myocardial renewal in the murine adult heart. Stem Cell Research and Therapy, 2015, 6, 205.	5.5	35
25	Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation. Frontiers in Molecular Neuroscience, 2015, 8, 10.	2.9	31
26	Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Frontiers in Molecular Neuroscience, 2015, 8, 12.	2.9	72
27	Type I IFNs Act upon Hematopoietic Progenitors To Protect and Maintain Hematopoiesis during <i>Pneumocystis</i> Lung Infection in Mice. Journal of Immunology, 2015, 195, 5347-5357.	0.8	43
28	HOXC8 initiates an ectopic mammary program by regulating Fgf10 and Tbx3 expression, and Wnt/ \hat{l}^2 -catenin signaling. Development (Cambridge), 2015, 142, 4056-67.	2.5	21
29	Hoxb1 regulates proliferation and differentiation of second heart field progenitors in pharyngeal mesoderm and genetically interacts with Hoxa1 during cardiac outflow tract development. Developmental Biology, 2015, 406, 247-258.	2.0	48
30	ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nature Communications, 2015, 6, 8763.	12.8	80
31	\hat{l}^2 -catenin stabilization enhances <i> SS18-SSX2 < /i> - driven synovial sarcomagenesis and blocks the mesenchymal to epithelial transition. Oncotarget, 2015, 6, 22758-22766.</i>	1.8	27
32	Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development (Cambridge), 2014, 141, 3697-3708.	2.5	47
33	Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes and Development, 2014, 28, 1578-1591.	5.9	87
34	Modeling Alveolar Soft Part Sarcomagenesis in the Mouse: A Role for Lactate in the Tumor Microenvironment. Cancer Cell, 2014, 26, 851-862.	16.8	73
35	Response: Contributions of the Myf5-Independent Lineage to Myogenesis. Developmental Cell, 2014, 31, 539-541.	7.0	8
36	Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nature Medicine, 2014, 20, 1289-1300.	30.7	233

#	Article	lF	Citations
37	Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10678-10683.	7.1	21
38	Imaging Activity in Neurons and Glia with a Polr2a-Based and Cre-Dependent GCaMP5G-IRES-tdTomato Reporter Mouse. Neuron, 2014, 83, 1058-1072.	8.1	120
39	Sepp1UF forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radical Biology and Medicine, 2014, 69, 67-76.	2.9	37
40	Fine-Tuning of iPSC Derivation by an Inducible Reprogramming System at the Protein Level. Stem Cell Reports, 2014, 2, 721-733.	4.8	14
41	BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology, 2013, 15, 846-852.	10.3	126
42	Toward an understanding of the short bone phenotype associated with multiple osteochondromas. Journal of Orthopaedic Research, 2013, 31, 651-657.	2.3	19
43	Modeling Clear Cell Sarcomagenesis in the Mouse: Cell of Origin Differentiation State Impacts Tumor Characteristics. Cancer Cell, 2013, 23, 215-227.	16.8	51
44	Targeting the Wnt Pathway in Synovial Sarcoma Models. Cancer Discovery, 2013, 3, 1286-1301.	9.4	62
45	Nicotinic Receptor Alpha7 Expression Identifies a Novel Hematopoietic Progenitor Lineage. PLoS ONE, 2013, 8, e57481.	2.5	26
46	Cardiovascular defects in a mouse model of HOXA1 syndrome. Human Molecular Genetics, 2012, 21, 26-31.	2.9	86
47	Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Developmental Biology, 2012, 371, 235-245.	2.0	109
48	Gene Targeting. , 2012, , 19-35.		5
49	Deconstruction of the SS18-SSX Fusion Oncoprotein Complex: Insights into Disease Etiology and Therapeutics. Cancer Cell, 2012, 21, 333-347.	16.8	135
50	Hox genes define distinct progenitor sub-domains within the second heart field. Developmental Biology, 2011, 353, 266-274.	2.0	144
51	Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Developmental Biology, 2011, 357, 295-304.	2.0	51
52	A mouse model of osteochondromagenesis from clonal inactivation of $\langle i \rangle$ Ext1 $\langle i \rangle$ in chondrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2054-2059.	7.1	109
53	Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice. Cell, 2010, 141, 775-785.	28.9	378
54	Hoxal lineage tracing indicates a direct role for Hoxal in the development of the inner ear, the heart, and the third rhombomere. Developmental Biology, 2010, 341, 499-509.	2.0	53

#	Article	IF	CITATIONS
55	Mice bearing a targeted mutation of nBmp2 display decreased memory capabilities. FASEB Journal, 2010, 24, lb27.	0.5	0
56	<i>Bmi1</i> lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7101-7106.	7.1	89
57	Mice with targeted inactivation of nBmp2 exhibit increased daytime activity. FASEB Journal, 2009, 23, 685.3.	0.5	O
58	Mice bearing a targeted inactivation of nBmp2 show decreased muscle strength. FASEB Journal, 2009, 23, 685.2.	0.5	0
59	Synovial Sarcoma: From Genetics to Genetic-based Animal Modeling. Clinical Orthopaedics and Related Research, 2008, 466, 2156-2167.	1.5	80
60	The Making of a Scientist II (Nobel Lecture). ChemBioChem, 2008, 9, 1530-1543.	2.6	5
61	Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 2008, 40, 915-920.	21.4	1,083
62	An examination of the Chiropteran HoxD locus from an evolutionary perspective. Evolution & Development, 2008, 10, 657-670.	2.0	24
63	Two Cell Lineages, myf5 and myf5-Independent, Participate in Mouse Skeletal Myogenesis. Developmental Cell, 2008, 14, 437-445.	7.0	119
64	In vivo evaluation of PhiC31 recombinase activity using a self-excision cassette. Nucleic Acids Research, 2008, 36, e134-e134.	14.5	22
65	A Conditional Mouse Model of Synovial Sarcoma: Insights into a Myogenic Origin. Cancer Cell, 2007, 11, 375-388.	16.8	274
66	Toward simpler and faster genome-wide mutagenesis in mice. Nature Genetics, 2007, 39, 922-930.	21.4	132
67	Reversal of Hox1 Gene Subfunctionalization in the Mouse. Developmental Cell, 2006, 11, 239-250.	7.0	81
68	Virtual Histology of Transgenic Mouse Embryos for High-Throughput Phenotyping. PLoS Genetics, 2006, 2, e61.	3.5	153
69	Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 2005, 6, 507-512.	16.3	632
70	Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes and Development, 2004, 18, 2608-2613.	5.9	208
71	Contribution of Hox genes to the diversity of the hindbrain sensory system. Development (Cambridge), 2004, 131, 1259-1266.	2.5	50
72	Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes and Development, 2004, 18, 2614-2626.	5.9	277

#	Article	IF	Citations
73	Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes and Development, 2004, 18, 1539-1552.	5.9	54
74	Multiple roles of <i> Hoxa11 < /i > and <i> Hoxd11 < /i > in the formation of the mammalian forelimb zeugopod. Development (Cambridge), 2004, 131, 299-309.</i></i>	2.5	121
75	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	21.4	556
76	The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Developmental Biology, 2004, 273, 361-372.	2.0	175
77	Hoxb1 neural crest preferentially form glia of the PNS. Developmental Dynamics, 2003, 227, 379-386.	1.8	52
78	Ectodermal Wnt3/beta -catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes and Development, 2003, 17, 394-409.	5.9	262
79	Hoxb13 mutations cause overgrowth of caudal spinal cordand tail vertebrae. Developmental Biology, 2003, 256, 317-330.	2.0	156
80	Hox10 and Hox11 Genes Are Required to Globally Pattern the Mammalian Skeleton. Science, 2003, 301, 363-367.	12.6	511
81	Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development (Cambridge), 2003, 130, 5191-5201.	2.5	76
82	Hox11 paralogous genes are essential for metanephric kidney induction. Genes and Development, 2002, 16, 1423-1432.	5.9	225
83	Duplication of the Hoxd11 Gene Causes Alterations in the Axial and Appendicular Skeleton of the Mouse. Developmental Biology, 2002, 249, 96-107.	2.0	42
84	Hoxb8 Is Required for Normal Grooming Behavior in Mice. Neuron, 2002, 33, 23-34.	8.1	340
85	An <i>Fgf8</i> mouse mutant phenocopies human 22q11 deletion syndrome. Development (Cambridge), 2002, 129, 4591-4603.	2.5	312
86	Generating mice with targeted mutations. Nature Medicine, 2001, 7, 1086-1090.	30.7	108
87	Loss of <i>Eph-receptor</i> expression correlates with loss of cell adhesion and chondrogenic capacity in <i>Hoxa13</i> mutant limbs. Development (Cambridge), 2001, 128, 4177-4188.	2.5	127
88	Fgf8 is required for outgrowth and patterning of the limbs. Nature Genetics, 2000, 26, 455-459.	21.4	300
89	Choose your target. Nature Genetics, 2000, 26, 159-161.	21.4	19
90	Maintenance of functional equivalence during paralogous Hox gene evolution. Nature, 2000, 403, 661-665.	27.8	234

#	Article	IF	Citations
91	Analysis of Hoxa7/Hoxb7 mutants suggests periodicity in the generation of the different sets of vertebrae. Mechanisms of Development, 1998, 77, 49-57.	1.7	74
92	Hox Group 3 Paralogous Genes Act Synergistically in the Formation of Somitic and Neural Crest-Derived Structures. Developmental Biology, 1997, 192, 274-288.	2.0	150
93	Targeted Disruption ofhoxc-4Causes Esophageal Defects and Vertebral Transformations. Developmental Biology, 1996, 177, 232-249.	2.0	130
94	Absence of radius and ulna in mice lacking hoxa-11 andhoxd-11. Nature, 1995, 375, 791-795.	27.8	569
95	Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature, 1994, 370, 304-307.	27.8	236
96	Targeted Gene Replacement. Scientific American, 1994, 270, 52-59.	1.0	206
97	YACs to the rescue. Nature, 1993, 362, 205-206.	27.8	19
98	Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox geneHox-#150;1.6. Nature, 1992, 355, 516-520.	27.8	518
99	Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature, 1991, 350, 473-479.	27.8	835
100	Tapping the cellular telephone. Nature, 1990, 344, 105-105.	27.8	9
101	Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 1990, 346, 847-850.	27.8	856
102	How efficient can you get?. Nature, 1990, 348, 109-109.	27.8	19
103	Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336, 348-352.	27.8	1,707
104	Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51, 503-512.	28.9	2,323
105	Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature, 1986, 324, 34-38.	27.8	245
106	Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somatic Cell and Molecular Genetics, 1986, 12, 63-72.	0.7	41
107	Effect of cell cycle position on transformation by microinjection. Somatic Cell and Molecular Genetics, 1985, 11, 43-51.	0.7	25
108	Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell, 1983, 33, 705-716.	28.9	283

#	Article	IF	CITATIONS
109	High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell, 1980, 22, 479-488.	28.9	1,008