
## Eric A Jägle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984768/publications.pdf Version: 2024-02-01



FRIC A LÃOIE

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Investigation of temperature distribution and solidification morphology in multilayered directed<br>energy deposition of Al-0.5Sc-0.5Si alloy. International Journal of Heat and Mass Transfer, 2022, 186,<br>122492.                                                    | 4.8  | 18        |
| 2  | Comparative study of hydrogen embrittlement resistance between additively and conventionally<br>manufactured 304L austenitic stainless steels. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2021, 803, 140499. | 5.6  | 23        |
| 3  | Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of<br>an AlxCoCrFeNi high-entropy alloy. Acta Materialia, 2021, 204, 116505.                                                                                           | 7.9  | 115       |
| 4  | Properties and influence of microstructure and crystal defects in Fe2VAl modified by laser surface remelting. Scripta Materialia, 2021, 193, 153-157.                                                                                                                    | 5.2  | 16        |
| 5  | Reducing cohesion of metal powders for additive manufacturing by nanoparticle dry-coating. Powder<br>Technology, 2021, 379, 585-595.                                                                                                                                     | 4.2  | 28        |
| 6  | Nitride Dispersion Strengthened Steel Development after Sintering of Nitrided Feâ€4.6 at% Al Alloy<br>Powder. Steel Research International, 2021, 92, 2100174.                                                                                                           | 1.8  | 2         |
| 7  | Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion:<br>AISI 316L stainless steel as example. Materialia, 2021, 20, 101236.                                                                                              | 2.7  | 19        |
| 8  | Microstructural characterization of 15-5PH stainless steel processed by laser powder-bed fusion.<br>Materials Characterization, 2021, 181, 111485.                                                                                                                       | 4.4  | 8         |
| 9  | Influence of increased carbon content on the processability of high-speed steel HS6-5-3-8 by laser powder bed fusion. Additive Manufacturing, 2021, 46, 102125.                                                                                                          | 3.0  | 4         |
| 10 | On strong-scaling and open-source tools for analyzing atom probe tomography data. Npj<br>Computational Materials, 2021, 7, .                                                                                                                                             | 8.7  | 14        |
| 11 | Steels in additive manufacturing: A review of their microstructure and properties. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772,<br>138633.                                                          | 5.6  | 549       |
| 12 | Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys.<br>Additive Manufacturing, 2020, 32, 100910.                                                                                                                        | 3.0  | 27        |
| 13 | Early stage phase separation of AlCoCr0.75Cu0.5FeNi high-entropy powder at the nanoscale. Journal of Alloys and Compounds, 2020, 820, 153149.                                                                                                                            | 5.5  | 6         |
| 14 | In-situ synthesis via laser metal deposition of a lean Cu–3.4Cr–0.6Nb (at%) conductive alloy hardened<br>by Cr nano-scale precipitates and by Laves phase micro-particles. Acta Materialia, 2020, 197, 330-340.                                                          | 7.9  | 30        |
| 15 | Nitridation and hydrogen reduction of Fe-2.3â€ <sup>-</sup> wt% Al alloy powder. Powder Technology, 2020, 374, 527-533.                                                                                                                                                  | 4.2  | 3         |
| 16 | Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using<br>Elemental Powders. Materials, 2020, 13, 3922.                                                                                                                    | 2.9  | 28        |
| 17 | Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion.<br>Additive Manufacturing, 2020, 35, 101337.                                                                                                                           | 3.0  | 3         |
| 18 | High-strength Damascus steel by additive manufacturing. Nature, 2020, 582, 515-519.                                                                                                                                                                                      | 27.8 | 260       |

Eric A JÃ**g**le

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In-situ synthesis of oxides by reactive process atmospheres during L-PBF of stainless steel. Additive<br>Manufacturing, 2020, 33, 101178.                                                                                                         | 3.0 | 24        |
| 20 | On Strong Scaling Open Source Tools for Mining Atom Probe Tomography Data. Microscopy and Microanalysis, 2019, 25, 298-299.                                                                                                                       | 0.4 | 2         |
| 21 | Application of Atom Probe Tomography to Complex Microstructures of Laser Additively Manufactured<br>Samples. Microscopy and Microanalysis, 2019, 25, 2514-2515.                                                                                   | 0.4 | 0         |
| 22 | The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Materialia, 2019, 167, 136-148.                                                                      | 7.9 | 160       |
| 23 | Predictive process parameter selection for Selective Laser Melting Manufacturing: Applications to high thermal conductivity alloys. Additive Manufacturing, 2019, 27, 246-258.                                                                    | 3.0 | 31        |
| 24 | Misorientation-dependent solute enrichment at interfaces and its contribution to defect formation mechanisms during laser additive manufacturing of superalloys. Physical Review Materials, 2019, 3, .                                            | 2.4 | 30        |
| 25 | Synthesis and stabilization of a new phase regime in a Mo-Si-B based alloy by laser-based additive manufacturing. Acta Materialia, 2018, 151, 31-40.                                                                                              | 7.9 | 42        |
| 26 | Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta<br>Materialia, 2018, 150, 273-280.                                                                                                             | 7.9 | 81        |
| 27 | Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron<br>Beam Melting. Acta Materialia, 2018, 142, 82-94.                                                                                            | 7.9 | 344       |
| 28 | Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations. Journal of Materials Research, 2018, 33, 4018-4030.                                                                                      | 2.6 | 35        |
| 29 | Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Materialia, 2017, 129, 52-60.                                                                            | 7.9 | 224       |
| 30 | Combinatorial Alloy Design by Laser Additive Manufacturing. Steel Research International, 2017, 88,<br>1600416.                                                                                                                                   | 1.8 | 49        |
| 31 | In-process Precipitation During Laser Additive Manufacturing Investigated by Atom Probe Tomography.<br>Microscopy and Microanalysis, 2017, 23, 694-695.                                                                                           | 0.4 | 22        |
| 32 | Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser<br>Additive Manufacturing. Materials, 2017, 10, 8.                                                                                                     | 2.9 | 139       |
| 33 | Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition. Materials and Design, 2016, 111, 60-69.                                             | 7.0 | 57        |
| 34 | Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al<br>Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47,<br>4578-4593.                       | 2.2 | 6         |
| 35 | Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. Jom, 2016, 68, 943-949.                                                                                                                                     | 1.9 | 123       |
| 36 | The Nature and Origin of "Double Expanded Austenite―in Ni-Based Ni-Ti Alloys Developing Upon Low<br>Temperature Gaseous Nitriding. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2015, 46, 4115-4131. | 2.2 | 16        |

Eric A JÃ**ë**le

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Co-deformation of crystalline-amorphous nanolaminates. Microscopy and Microanalysis, 2015, 21, 361-362.                                                                                                                                               | 0.4 | 2         |
| 38 | Deformation induced alloying in crystalline – metallic glass nano-composites. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 269-280.                                              | 5.6 | 19        |
| 39 | Microstructural influences on strengthening in a naturally aged and overaged Al–Cu–Li–Mg based<br>alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 637, 162-169.                   | 5.6 | 27        |
| 40 | Publisher's Note: Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous<br>Nanolaminates [Phys. Rev. Lett. <b>113</b> , 035501 (2014)]. Physical Review Letters, 2014, 113, .                                                           | 7.8 | 7         |
| 41 | Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous Nanolaminates. Physical Review Letters, 2014, 113, 035501.                                                                                                                        | 7.8 | 70        |
| 42 | Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. Journal of Materials Research, 2014, 29, 2072-2079.                                                                                           | 2.6 | 221       |
| 43 | The Maximum Separation Cluster Analysis Algorithm for Atom-Probe Tomography: Parameter Determination and Accuracy. Microscopy and Microanalysis, 2014, 20, 1662-1671.                                                                                 | 0.4 | 46        |
| 44 | Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu<br>nanolaminates. Acta Materialia, 2014, 80, 94-106.                                                                                                     | 7.9 | 135       |
| 45 | Interplay of Kinetics and Microstructure in the Recrystallization of Pure Copper: Comparing<br>Mesoscopic Simulations and Experiments. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2012, 43, 2534-2551. | 2.2 | 4         |
| 46 | The Kinetics of and the Microstructure Induced by the Recrystallization of Copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1117-1131.                                                        | 2.2 | 21        |
| 47 | The kinetics of grain-boundary nucleated phase transformations: Simulations and modelling. Acta Materialia, 2011, 59, 5775-5786.                                                                                                                      | 7.9 | 26        |
| 48 | Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations.<br>International Journal of Materials Research, 2011, 102, 837-845.                                                                                     | 0.3 | 1         |
| 49 | Kinetics of the allotropic hcp–fcc phase transformation in cobalt. Philosophical Magazine, 2011, 91, 437-457.                                                                                                                                         | 1.6 | 69        |
| 50 | Predicting microstructures from phase transformation kinetics: the case of isochronal heating and cooling from a supersaturated matrix. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 065010.                              | 2.0 | 12        |
| 51 | Simulation of the Kinetics of Grain-Boundary Nucleated Phase Transformations. Solid State<br>Phenomena, 0, 172-174, 1128-1133.                                                                                                                        | 0.3 | 3         |