
Martin Kompis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using a cochlear implant processor as contralateral routing of signals device in unilateral cochlear implant recipients. European Archives of Oto-Rhino-Laryngology, 2022, 279, 645-652.	1.6	1
2	Severity of hearing loss after platinum chemotherapy in childhood cancer survivors. Pediatric Blood and Cancer, 2022, 69, .	1.5	5
3	10.1121/10.0005732.1., 2021, , .		Ο
4	Effects of temporal fine structure preservation on spatial hearing in bilateral cochlear implant users. Journal of the Acoustical Society of America, 2021, 150, 673-686.	1.1	8
5	Pinna-Imitating Microphone Directionality Improves Sound Localization and Discrimination in Bilateral Cochlear Implant Users. Ear and Hearing, 2021, 42, 214-222.	2.1	14
6	Influence of Compression Thresholds and Maximum Power Output on Speech Understanding with Bone-Anchored Hearing Systems. BioMed Research International, 2021, 2021, 1-6.	1.9	1
7	Influence of maximum power output on speech understanding with bone anchored hearing systems. Acta Oto-Laryngologica, 2020, 140, 225-229.	0.9	8
8	Usefulness of current candidate genetic markers to identify childhood cancer patients at risk for platinum-induced ototoxicity: Results of the European PanCareLIFE cohort study. European Journal of Cancer, 2020, 138, 212-224.	2.8	31
9	Association of candidate pharmacogenetic markers with platinum-induced ototoxicity: PanCareLIFE dataset. Data in Brief, 2020, 32, 106227.	1.0	2
10	Multicenter Study Investigating Foreign Language Acquisition at School in Children, Adolescents, and Young Adults With Uni- or Bilateral Cochlear Implants in the Swiss German Population. Otology and Neurotology, 2020, 41, e580-e587.	1.3	3
11	Rehabilitation and Prognosis of Disorders of Hearing Development. European Manual of Medicine, 2020, , 983-1086.	0.1	Ο
12	Robotic middle ear access for cochlear implantation: First in man. PLoS ONE, 2019, 14, e0220543.	2.5	67
13	Outcome prediction for Bonebridge candidates based on audiological indication criteria. Auris Nasus Larynx, 2019, 46, 681-686.	1.2	18
14	Voluntary increase of acoustic middle ear impedances with simultaneous sound attenuation associated with mild hyperacusis (VIMH). Acta Oto-Laryngologica, 2019, 139, 373-378.	0.9	1
15	Efficacy of Auditory Implants for Patients With Conductive and Mixed Hearing Loss Depends on Implant Center. Otology and Neurotology, 2019, 40, 430-435.	1.3	19
16	Musical Ear Syndrome and Cochlear Explantation: Case Report and Proposal for a Theoretical Framework. Otology and Neurotology, 2019, 40, e962-e965.	1.3	3
17	Mobile Internet Telephony Improves Speech Intelligibility and Quality for Cochlear Implant Recipients. Otology and Neurotology, 2019, 40, e206-e214.	1.3	4
18	Association Between Residual Inhibition and Neural Activity in Patients with Tinnitus: Protocol for a Controlled Within- and Between-Subject Comparison Study. JMIR Research Protocols, 2019, 8, e12270.	1.0	9

Martin Kompis

#	Article	IF	CITATIONS
19	Cochlear implants in single-sided deafness – clinical results of a Swiss multicentre study. Swiss Medical Weekly, 2019, 149, w20171.	1.6	8
20	Audiological monitoring in Swiss childhood cancer patients. Pediatric Blood and Cancer, 2018, 65, e26877.	1.5	11
21	Measurements of Trunk Sway for Stance and Gait Tasks 2 Years after Vestibular Neurectomy. Audiology and Neuro-Otology, 2018, 23, 298-308.	1.3	1
22	Speech Understanding and Sound Localization with a New Nonimplantable Wearing Option for Baha. BioMed Research International, 2018, 2018, 1-8.	1.9	17
23	Unilateral and Bilateral Audiological Benefit With an Adhesively Attached, Noninvasive Bone Conduction Hearing System. Otology and Neurotology, 2018, 39, 1025-1030.	1.3	27
24	Minimal Reporting Standards for Active Middle Ear Hearing Implants. Audiology and Neuro-Otology, 2018, 23, 105-115.	1.3	23
25	Cochlear Implant Insertion Depth Prediction: A Temporal Bone Accuracy Study. Otology and Neurotology, 2018, 39, e996-e1001.	1.3	20
26	Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto-Laryngologica, 2017, 137, 447-454.	0.9	94
27	Comment on the paper by Dazert et al. entitled â€~Off the ear with no loss in speech understanding: comparing the RONDO and the OPUS 2 cochlear implant audio processors'. European Archives of Oto-Rhino-Laryngology, 2017, 274, 3261-3262.	1.6	0
28	Directional Microphone Contralateral Routing of Signals in Cochlear Implant Users: A Within-Subjects Comparison. Ear and Hearing, 2017, 38, 368-373.	2.1	25
29	Long term benefit of bone anchored hearing systems in single sided deafness. Acta Oto-Laryngologica, 2017, 137, 398-402.	0.9	14
30	Instrument flight to the inner ear. Science Robotics, 2017, 2, .	17.6	75
31	Long-term auditory complications after childhood cancer: A report from the Swiss Childhood Cancer Survivor Study. Pediatric Blood and Cancer, 2017, 64, 364-373.	1.5	29
32	Validation of questionnaire-reported hearing with medical records: A report from the Swiss Childhood Cancer Survivor Study. PLoS ONE, 2017, 12, e0174479.	2.5	9
33	Influence of Telecommunication Modality, Internet Transmission Quality, and Accessories on Speech Perception in Cochlear Implant Users. Journal of Medical Internet Research, 2017, 19, e135.	4.3	8
34	Speech Intelligibility in Noise With a Pinna Effect Imitating Cochlear Implant Processor. Otology and Neurotology, 2016, 37, 19-23.	1.3	33
35	Estimating the benefit of a second bone anchored hearing implant in unilaterally implanted users with a testband. Acta Oto-Laryngologica, 2016, 136, 379-384.	0.9	3
36	Predisposing factors for adverse skin reactions with percutaneous bone anchored hearing devices implanted with skin reduction techniques. European Archives of Oto-Rhino-Laryngology, 2016, 273, 4185-4192.	1.6	9

MARTIN KOMPIS

#	Article	IF	CITATIONS
37	Bone conduction responses of middle ear structures in Thiel embalmed heads. AIP Conference Proceedings, 2015, , .	0.4	0
38	Speech Intelligibility in Noise With a Single-Unit Cochlear Implant Audio Processor. Otology and Neurotology, 2015, 36, 1197-1202.	1.3	17
39	Cochlear implant candidates with psychogenic hearing loss. Acta Oto-Laryngologica, 2015, 135, 376-380.	0.9	4
40	Benefit of a Contralateral Routing of Signal Device for Unilateral Cochlear Implant Users. Audiology and Neuro-Otology, 2015, 20, 73-80.	1.3	11
41	Quality standards for bone conduction implants. Acta Oto-Laryngologica, 2015, 135, 1277-1285.	0.9	23
42	Speech Understanding with a New Implant Technology: A Comparative Study with a New Nonskin Penetrating Baha System. BioMed Research International, 2014, 2014, 1-9.	1.9	65
43	Is complex signal processing for bone conduction hearing aids useful?. Cochlear Implants International, 2014, 15, S47-S50.	1.2	6
44	Cone Beam and Micro-Computed Tomography Validation of Manual Array Insertion for Minimally Invasive Cochlear Implantation. Audiology and Neuro-Otology, 2014, 19, 22-30.	1.3	35
45	Influence of directionality and maximal power output on speech understanding with bone anchored hearing implants in single sided deafness. European Archives of Oto-Rhino-Laryngology, 2014, 271, 1395-1400.	1.6	12
46	Cochlear implantation in children and adults in Switzerland. Swiss Medical Weekly, 2014, 144, w13909.	1.6	14
47	Bone conduction in Thiel-embalmed cadaver heads. Hearing Research, 2013, 306, 115-122.	2.0	30
48	Hearing Performance With 2 Different High-Power Sound Processors for Osseointegrated Auditory Implants. Otology and Neurotology, 2013, 34, 604-610.	1.3	9
49	Internet Video Telephony Allows Speech Reading by Deaf Individuals and Improves Speech Perception by Cochlear Implant Users. PLoS ONE, 2013, 8, e54770.	2.5	16
50	A multilingual audiometer simulator software for training purposes. Acta Oto-Laryngologica, 2012, 132, 428-433.	0.9	7
51	Tinnitus before and 6 Months after Cochlear Implantation. Audiology and Neuro-Otology, 2012, 17, 161-168.	1.3	57
52	Speech Perception Benefits of Internet Versus Conventional Telephony for Hearing-Impaired Individuals. Journal of Medical Internet Research, 2012, 14, e102.	4.3	14
53	Audiological Results with Baha [®] in Conductive and Mixed Hearing Loss. Advances in Oto-Rhino-Laryngology, 2011, 71, 73-83.	1.6	19
54	Factors Influencing the Decision for Baha in Unilateral Deafness: The Bern Benefit in Single-Sided Deafness Questionnaire. Advances in Oto-Rhino-Laryngology, 2011, 71, 103-111.	1.6	51

MARTIN KOMPIS

#	Article	IF	CITATIONS
55	Benefits of Low-Frequency Attenuation of Baha® in Single-Sided Sensorineural Deafness. Ear and Hearing, 2011, 32, 40-45.	2.1	36
56	Comparisons of Sound Processors Based on Osseointegrated Implants in Patients With Conductive or Mixed Hearing Loss. Otology and Neurotology, 2011, 32, 728-735.	1.3	28
57	In-the-Canal Versus Behind-the-Ear Microphones Improve Spatial Discrimination on the Side of the Head in Bilateral Cochlear Implant Users. Otology and Neurotology, 2011, 32, 1-6.	1.3	13
58	How Internet Telephony Could Improve Communication for Hearing-Impaired Individuals. Otology and Neurotology, 2010, 31, 1014-1021.	1.3	11
59	Factors Improving the Vibration Transfer of the Floating Mass Transducer at the Round Window. Otology and Neurotology, 2010, 31, 122-128.	1.3	53
60	Non-organic hearing loss: new and confirmed findings. European Archives of Oto-Rhino-Laryngology, 2010, 267, 1213-1219.	1.6	20
61	Improvement in Speech Understanding and User Satisfaction after Upgrading from the Medel Tempo+ to the Opus2 Speech Processor. Cochlear Implants International, 2010, 11, 437-441.	1.2	4
62	The floating mass transducer at the round window: Direct transmission or bone conduction?. Hearing Research, 2010, 263, 120-127.	2.0	39
63	Bone-Anchored Hearing Aids. Otology and Neurotology, 2009, 30, 884-890.	1.3	30
64	Improving Speech Understanding in Noise for Users of Bone Anchored Hearing Aids (BAHA). IFMBE Proceedings, 2009, , 1620-1623.	0.3	0
65	A Novel Implantable Hearing System with Direct Acoustic Cochlear Stimulation. Audiology and Neuro-Otology, 2008, 13, 247-256.	1.3	80
66	A Two-Microphone Noise Reduction System for Cochlear Implant Users with Nearby Microphones—Part II: Performance Evaluation. Eurasip Journal on Advances in Signal Processing, 2008, 2008, .	1.7	5
67	A Two-Microphone Noise Reduction System for Cochlear Implant Users with Nearby Microphones—Part I: Signal Processing Algorithm Design and Development. Eurasip Journal on Advances in Signal Processing, 2008, 2008, .	1.7	2
68	A Measuring Medical Pocket Calculator. Medical Equipment Insights, 2008, 1, MEI.S822.	0.5	0
69	Speech understanding in quiet and in noise with the bone-anchored hearing aids Baha® Compact and Baha Divinoâ,,¢. Acta Oto-Laryngologica, 2007, 127, 829-835.	0.9	31
70	Human temporal bones versus mechanical model to evaluate three middle ear transducers. Journal of Rehabilitation Research and Development, 2007, 44, 407.	1.6	19
71	Anatomical study of the human middle ear for the design of implantable hearing aids. Auris Nasus Larynx, 2006, 33, 375-380.	1.2	12
72	Minimum Audible Angle, Just Noticeable Interaural Differences and Speech Intelligibility with Bilateral Cochlear Implants Using Clinical Speech Processors. Audiology and Neuro-Otology, 2005, 10, 342-352.	1.3	94

MARTIN KOMPIS

#	Article	IF	CITATIONS
73	Acclimatization in first-time hearing aid users using three different fitting protocols. Auris Nasus Larynx, 2005, 32, 345-351.	1.2	32
74	Computer assisted optimization of an electromagnetic transducer design for implantable hearing aids. Computers in Biology and Medicine, 2004, 34, 141-152.	7.0	12
75	Bilateral cochlear implantation and directional multi-microphone systems. International Congress Series, 2004, 1273, 447-450.	0.2	3
76	Scuba Diving with Cochlear Implants. Annals of Otology, Rhinology and Laryngology, 2003, 112, 425-427.	1.1	7
77	Electromagnetic Interference of Bone-anchored Hearing Aids by Cellular Phones Revisited. Acta Oto-Laryngologica, 2002, 122, 510-512.	0.9	7
78	Intra-and intersubject comparison of cochlear implant systems using the Esprit and the Tempo+ behind-the-ear speech processor: Comparacion intra e inter-personal de los sistemas de implante coclear utilizando los procesadores de lenguaje retroauriculares Esprit y Tempo+. International Journal of Audiology, 2002, 41, 555-562.	1.7	8
79	Evaluation of a noise reduction system for the assessment of click-evoked otoacoustic emissions. Journal of the Acoustical Society of America, 2002, 112, 164-171.	1.1	10
80	Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. I. Prediction of the signal-to-noise-ratio improvement. Journal of the Acoustical Society of America, 2001, 109, 1123-1133.	1.1	31
81	Comparison of the TEMPO+ Ear-Level Speech Processor and the CIS PRO+ Body-Worn Processor in Adult MED-EL Cochlear Implant Users. Orl, 2001, 63, 31-40.	1.1	37
82	Acoustic Imaging of the Human Chest. Chest, 2001, 120, 1309-1321.	0.8	116
83	Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. II. Experimental verification of the predictions. Journal of the Acoustical Society of America, 2001, 109, 1134-1143.	1.1	30
84	A novel real-time noise reduction system for the assessment of evoked otoacoustic emissions. Computers in Biology and Medicine, 2000, 30, 341-354.	7.0	8
85	Electromagnetic Interference of Bone-anchored Hearing Aids by Cellular Phones. Acta Oto-Laryngologica, 2000, 120, 855-859.	0.9	13
86	Performance of Compressed Analogue (CA) and Continuous Interleaved Sampling (CIS) Coding Strategies for Cochlear Implants in Quiet and Noise. Acta Oto-Laryngologica, 1999, 119, 659-664.	0.9	9
87	Computer-based lung sound simulation. Medical and Biological Engineering and Computing, 1997, 35, 231-238.	2.8	3
88	Noise reduction for hearing aids: Combining directional microphones with an adaptive beamformer. Journal of the Acoustical Society of America, 1994, 96, 1910-1913.	1.1	39
89	Simulating transfer functions in a reverberant room including source directivity and headâ€ s hadow effects. Journal of the Acoustical Society of America, 1993, 93, 2779-2787.	1.1	24
90	Adaptive heart-noise reduction of lung sounds recorded by a single microphone. , 1992, , .		21

6

Martin Kompis

#	Article	IF	CITATIONS
91	DSP-implementations of speech coding for multielectrode cochlear implants and multiband loudness correction for digital hearing aids. , 1991, , .		0
92	Noise Reduction For Hearing Aids: Evaluation Of The Adaptive Beamformer approach. , 0, , .		1
93	Coherence of inspiratory and expiratory breath sounds as a function of inter-microphone distance. , 0, , .		2
94	Distribution of inspiratory and expiratory respiratory sound intensity on the surface of the human thorax. , 0, , .		9
95	New target-signal-detection schemes for multi-microphone noise-reduction systems for hearing aids. , 0, , .		4
96	A combined fixed/adaptive beamforming noise-reduction system for hearing aids. , 0, , .		2
97	Design considerations for a contactless electromagnetic transducer for implantable hearing aids. , 0, , .		3