Evan P Jahrman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984080/publications.pdf

Version: 2024-02-01

840776 888059 19 762 11 17 citations h-index g-index papers 19 19 19 880 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Iron redox analysis of silicate-based minerals and glasses using synchrotron X-ray absorption and laboratory X-ray emission spectroscopy. Journal of Non-Crystalline Solids, 2022, 577, 121326.	3.1	О
2	Assessing arsenic species in foods using regularized linear regression of the arsenic K-edge X-ray absorption near edge structure. Journal of Analytical Atomic Spectrometry, 2022, 37, 1247-1258.	3.0	6
3	Valence-to-core X-ray emission spectroscopy of vanadium oxide and lithiated vanadyl phosphate materials. Journal of Materials Chemistry A, 2020, 8, 16332-16344.	10.3	10
4	Factors Defining the Intercalation Electrochemistry of CaFe ₂ O ₄ -Type Manganese Oxides. Chemistry of Materials, 2020, 32, 8203-8215.	6.7	6
5	Probing Sulfur Chemical and Electronic Structure with Experimental Observation and Quantitative Theoretical Prediction of $Kl\pm$ and Valence-to-Core Kl^2 X-ray Emission Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 5415-5434.	2.5	30
6	Spherically bent mica analyzers as universal dispersing elements for Xâ€ray spectroscopy. X-Ray Spectrometry, 2020, 49, 493-501.	1.4	1
7	Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy, 2020, 70, 104519.	16.0	188
8	Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Materials, 2020, 29, 9-16.	18.0	139
9	Laboratory-Based X-ray Absorption Spectroscopy on a Working Pouch Cell Battery at Industrially-Relevant Charging Rates. Journal of the Electrochemical Society, 2019, 166, A2549-A2555.	2.9	20
10	V ₂ O ₅ –Conductive polymer nanocables with built-in local electric field derived from interfacial oxygen vacancies for high energy density supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17966-17973.	10.3	53
11	Vacuum formed temporary spherically and toroidally bent crystal analyzers for x-ray absorption and x-ray emission spectroscopy. Review of Scientific Instruments, 2019, 90, 013106.	1.3	12
12	Interface Engineering V ₂ O ₅ Nanofibers for Highâ€Energy and Durable Supercapacitors. Small, 2019, 15, e1901747.	10.0	66
13	An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research. Review of Scientific Instruments, 2019, 90, 024106.	1.3	70
14	Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in V ₂ O ₅ /PEDOT Nanocable-Based Supercapacitors. ACS Applied Materials & lnterfaces, 2019, 11, 16647-16655.	8.0	57
15	A mail-in and user facility for X-ray absorption near-edge structure: the CEI-XANES laboratory X-ray spectrometer at the University of Washington. Journal of Synchrotron Radiation, 2019, 26, 2086-2093.	2.4	14
16	Determination of Hexavalent Chromium Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission Spectroscopy. Analytical Chemistry, 2018, 90, 6587-6593.	6.5	23
17	Aminophosphines as Versatile Precursors for the Synthesis of Metal Phosphide Nanocrystals. Chemistry of Materials, 2018, 30, 5373-5379.	6.7	54
18	Double-ionization satellites in the x-ray emission spectrum of Ni metal. Physical Review A, 2017, 96, .	2.5	10

#	Article	lF	CITATIONS
19	Effect of chlorine and chromium on sulfur solubility in Lowâ€activity waste glass. International Journal of Applied Glass Science, 0, , .	2.0	3