
Sergio Casas TintÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6984077/publications.pdf Version: 2024-02-01

SERCIO CASAS ΤΙΝΤÃ3

#	Article	IF	CITATIONS
1	Neural functions of small heat shock proteins. Neural Regeneration Research, 2022, 17, 512.	3.0	10
2	Circadian Gene cry Controls Tumorigenesis through Modulation of Myc Accumulation in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 2043.	4.1	2
3	Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nature Communications, 2022, 13, 1174.	12.8	32
4	Alignment between glioblastoma internal clock and environmental cues ameliorates survival in Drosophila. Communications Biology, 2022, 5, .	4.4	5
5	Insulin signaling mediates neurodegeneration in glioma. Life Science Alliance, 2021, 4, e202000693.	2.8	15
6	The haplolethality paradox of the wupA gene in Drosophila. PLoS Genetics, 2021, 17, e1009108.	3.5	3
7	JNK Pathway in CNS Pathologies. International Journal of Molecular Sciences, 2021, 22, 3883.	4.1	27
8	A novel injury paradigm in the central nervous system of adult <i>Drosophila</i> : molecular, cellular and functional aspects. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	5
9	Modeling invasion patterns in the glioblastoma battlefield. PLoS Computational Biology, 2021, 17, e1008632.	3.2	15
10	Cell to cell communication mediates glioblastoma progression in Drosophila. Biology Open, 2020, 9, .	1.2	8
11	Small heat shock proteins determine synapse number and neuronal activity during development. PLoS ONE, 2020, 15, e0233231.	2.5	6
12	New Cellular Dimensions on Glioblastoma Progression. Neuroscience Insights, 2020, 15, 263310552092307.	1.6	7
13	The EGFR-TMEM167A-p53 Axis Defines the Aggressiveness of Gliomas. Cancers, 2020, 12, 208.	3.7	12
14	PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation. Molecular Biology of the Cell, 2020, 31, 244-260.	2.1	8
15	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0
16	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0
17	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0
18	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0

Sergio Casas TintÃ³

#	Article	IF	CITATIONS
19	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0
20	Small heat shock proteins determine synapse number and neuronal activity during development. , 2020, 15, e0233231.		0
21	Troponin-I localizes selected apico-basal cell polarity signals. Journal of Cell Science, 2019, 132, .	2.0	8
22	Cytonemes, Their Formation, Regulation, and Roles in Signaling and Communication in Tumorigenesis. International Journal of Molecular Sciences, 2019, 20, 5641.	4.1	23
23	Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biology, 2019, 17, e3000545.	5.6	55
24	Oncogenic dependence of glioma cells on kish/TMEM167A regulation of vesicular trafficking. Glia, 2019, 67, 404-417.	4.9	21
25	Title is missing!. , 2019, 17, e3000545.		Ο
26	Title is missing!. , 2019, 17, e3000545.		0
27	Title is missing!. , 2019, 17, e3000545.		0
28	Title is missing!. , 2019, 17, e3000545.		0
29	Title is missing!. , 2019, 17, e3000545.		0
30	Title is missing!. , 2019, 17, e3000545.		0
31	Title is missing!. , 2019, 17, e3000545.		Ο
32	Molecular mechanisms that change synapse number. Journal of Neurogenetics, 2018, 32, 155-170.	1.4	8
33	Aberrant Wnt signaling: a special focus in CNS diseases. Journal of Neurogenetics, 2017, 31, 216-222.	1.4	36
34	<i>Drosophila</i> enhancer-Gal4 lines show ectopic expression during development. Royal Society Open Science, 2017, 4, 170039.	2.4	32
35	Orb2 as modulator of Brat and their role at the neuromuscular junction. Journal of Neurogenetics, 2017, 31, 181-188.	1.4	6
36	Amyloid β42 peptide is toxic to non-neural cells in <i>Drosophila</i> yielding a characteristic metabolite profile and the effect can be suppressed by PI3K. Biology Open, 2017, 6, 1664-1671.	1.2	5

Sergio Casas TintÃ³

#	Article	IF	CITATIONS
37	The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS ONE, 2017, 12, e0184238.	2.5	20
38	Classically-activated macrophages elimination in tumor-conditioned medium by alternatively-activated macrophages. Biology Open, 2017, 6, 1897-1903.	1.2	3
39	Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. PLoS Biology, 2016, 14, e1002361.	5.6	77
40	Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget, 2016, 7, 52631-52642.	1.8	28
41	Widening the concept of oncogene. Aging, 2016, 8, 2262-2263.	3.1	1
42	The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression. MBio, 2015, 6, .	4.1	21
43	Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition. Nature Communications, 2015, 6, 10022.	12.8	38
44	An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia. Oncogene, 2015, 34, 2385-2397.	5.9	23
45	Cell types and coincident synapses in the ellipsoid body of <i>Drosophila</i> . European Journal of Neuroscience, 2014, 39, 1586-1601.	2.6	62
46	Combined Pharmacological Induction of Hsp70 Suppresses Prion Protein Neurotoxicity in Drosophila. PLoS ONE, 2014, 9, e88522.	2.5	11
47	How winner cells cause the demise of loser cells. BioEssays, 2013, 35, 348-353.	2.5	10
48	Cell Competition Time Line: Winners Kill Losers, which Are Extruded and Engulfed by Hemocytes. Cell Reports, 2012, 2, 526-539.	6.4	81
49	The flower code and cancer development. Clinical and Translational Oncology, 2011, 13, 5-9.	2.4	13
50	The ER stress factor XBP1s prevents amyloid-β neurotoxicity. Human Molecular Genetics, 2011, 20, 2144-2160.	2.9	258
51	Sequence-dependent Prion Protein Misfolding and Neurotoxicity. Journal of Biological Chemistry, 2010, 285, 36897-36908.	3.4	39
52	Exploring prion protein biology in flies. Prion, 2010, 4, 1-8.	1.8	18
53	Flower Forms an Extracellular Code that Reveals the Fitness of a Cell to its Neighbors in Drosophila. Developmental Cell, 2010, 18, 985-998.	7.0	189
54	Drosophila SPARC Is a Self-Protective Signal Expressed by Loser Cells during Cell Competition. Developmental Cell, 2010, 19, 562-573.	7.0	115

#	Article	IF	CITATIONS
55	In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms. PLoS Genetics, 2009, 5, e1000507.	3.5	76
56	FoxK mediates TGF-β signalling during midgut differentiation in flies. Journal of Cell Biology, 2008, 183, 1049-1060.	5.2	13
57	Characterization of the Drosophila insulin receptor promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 236-243.	2.4	16
58	DmFoxF, a novel Drosophila fork head factor expressed in visceral mesoderm. Mechanisms of Development, 2002, 111, 163-166.	1.7	17