## Francisco-Javier Leyva-Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6983945/publications.pdf

Version: 2024-02-01



FRANCISCO-JAVIER

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by<br>supercritical fluid extraction with CO2: A response surface methodology approach. Journal of CO2<br>Utilization, 2020, 40, 101194.    | 3.3 | 63        |
| 2  | Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized<br>Liquid Extraction. Foods, 2021, 10, 203.                                                                                        | 1.9 | 54        |
| 3  | Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT - Food Science and Technology, 2019, 101, 236-245.                                                           | 2.5 | 50        |
| 4  | Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Research International, 2020, 138, 109786.                                           | 2.9 | 47        |
| 5  | Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Research International, 2018, 109, 213-222.                                          | 2.9 | 41        |
| 6  | Characterization of a new blackberry cultivar BRS Xingu: Chemical composition, phenolic compounds, and antioxidant capacity in vitro and in vivo. Food Chemistry, 2020, 322, 126783.                                            | 4.2 | 27        |
| 7  | LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa<br>By-Products for Commercial Applications. Molecules, 2020, 25, 3177.                                                            | 1.7 | 26        |
| 8  | Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. Biomedicine and Pharmacotherapy, 2021, 142, 111959.         | 2.5 | 25        |
| 9  | Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four<br>Different Morus alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants, 2020, 9, 733.                           | 2.2 | 24        |
| 10 | Functional Ingredients based on Nutritional Phenolics. A Case Study against Inflammation: Lippia<br>Genus. Nutrients, 2019, 11, 1646.                                                                                           | 1.7 | 19        |
| 11 | The Beneficial Effects of <i>Lippia Citriodora</i> Extract on Dietâ€Induced Obesity in Mice Are<br>Associated with Modulation in the Gut Microbiota Composition. Molecular Nutrition and Food<br>Research, 2020, 64, e2000005.  | 1.5 | 19        |
| 12 | Innovative perspectives on Pulicaria dysenterica extracts: phytoâ€pharmaceutical properties, chemical characterization and multivariate analysis. Journal of the Science of Food and Agriculture, 2019, 99, 6001-6010.          | 1.7 | 16        |
| 13 | Optimized Extraction of Phenylpropanoids and Flavonoids from Lemon Verbena Leaves by Supercritical<br>Fluid System Using Response Surface Methodology. Foods, 2020, 9, 931.                                                     | 1.9 | 16        |
| 14 | Effect of Microwave Hydrodiffusion and Gravity on the Extraction of Phenolic Compounds and<br>Antioxidant Properties of Blackberries (Rubus spp.): Scale-Up Extraction. Food and Bioprocess<br>Technology, 2020, 13, 2200-2216. | 2.6 | 15        |
| 15 | Manufacturing design to improve the attainment of functional ingredients from Aloysia citriodora<br>leaves by advanced microwave technology. Journal of Industrial and Engineering Chemistry, 2019, 79,<br>52-61.               | 2.9 | 14        |
| 16 | Spray-Drying Microencapsulation of Bioactive Compounds from Lemon Verbena Green Extract. Foods, 2020, 9, 1547.                                                                                                                  | 1.9 | 11        |
| 17 | Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid<br>Vesicles to Improve Its Antioxidant Activity. Nanomaterials, 2020, 10, 765.                                                    | 1.9 | 9         |
| 18 | Comprehensive Analysis of Antioxidant Compounds from Lippia citriodora and Hibiscus sabdariffa<br>Green Extracts Attained by Response Surface Methodology. Antioxidants, 2020, 9, 1175.                                         | 2.2 | 8         |

FRANCISCO-JAVIER

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chemistry, 2021, 337, 127746.                                           | 4.2 | 8         |
| 20 | Bioactivity assays, chemical characterization, ADMET predictions and network analysis of Khaya senegalensis A. Juss (Meliaceae) extracts. Food Research International, 2021, 139, 109970.                                            | 2.9 | 8         |
| 21 | A comparative assessment of biological activities of Gundelia dersim Miller and Gundelia glabra Vitek,<br>Yüce & Ergin extracts and their chemical characterization via HPLC-ESI-TOF-MS. Process<br>Biochemistry, 2020, 94, 143-151. | 1.8 | 7         |
| 22 | The Role of High-Resolution Analytical Techniques in the Development of Functional Foods.<br>International Journal of Molecular Sciences, 2021, 22, 3220.                                                                            | 1.8 | 7         |
| 23 | Revalorisation of Agro-Industrial Wastes into High Value-Added Products. Advances in Science,<br>Technology and Innovation, 2021, , 229-245.                                                                                         | 0.2 | 5         |
| 24 | Phenolic compounds. , 2022, , 27-53.                                                                                                                                                                                                 |     | 5         |
| 25 | A Prospective of Multiple Biopharmaceutical Activities of Procyanidinsâ€Rich <i>Uapaca togoensis</i><br>Pax Extracts: HPLCâ€ESIâ€TOFâ€MS Coupled with Bioinformatics Analysis. Chemistry and Biodiversity, 2021,<br>18, e2100299.    | 1.0 | 3         |
| 26 | New insights on Phyllanthus reticulatus Poir. leaves and stem bark extracts: UPLC-ESI-TOF-MS profiles, and biopharmaceutical and in silico analysis. New Journal of Chemistry, 0, , .                                                | 1.4 | 3         |
| 27 | Recent advances and new challenges of green solvents for the extraction of phenolic compounds from tropical fruits. , 2021, , 271-287.                                                                                               |     | 1         |
| 28 | Encapsulation technologies applied to bioactive phenolic compounds and probiotics with potential application on chronic inflammation. , 2022, , 447-476.                                                                             |     | 1         |
| 29 | Quality Assurance of commercial guacamoles preserved by high pressure processing versus conventional thermal processing. Food Control, 2022, 135, 108791.                                                                            | 2.8 | 1         |
|    |                                                                                                                                                                                                                                      |     |           |

30 Modern tools and techniques for bioactive food ingredients. , 2022, , 447-472.

0